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We introduce a class of generally applicable specification tests for constant and dynamic structures of conditional cor-
relations in multivariate GARCH models. The tests are robust to the presence of time-varying higher-order conditional
moments of unknown form and are pure significance tests. The tests can identify linear and nonlinear misspecifications
in conditional correlations. Our approach does not necessitate a particular parameter estimation method and distri-
butional assumption on the error process. The asymptotic distribution of the tests is invariant to the uncertainty in
parameter estimation. We assess the finite sample performance of our tests using simulated and real data.

1. INTRODUCTION

Correlations play a vital role in optimal portfolio diversification and hedge ratio estima-
tion (e.g., Bera and Kim, 2002; Engle, 2002) and are therefore very important in theoreti-
cal and empirical economics and finance. Multivariate generalized autoregressive conditional
heteroskedasticity (MGARCH) models provide a convenient framework for modeling correla-
tions. These models include the constant conditional correlation MGARCH (CCC-MGARCH)
model by Bollerslev (1990), which has been the most widely used model due to its sim-
ple variance–covariance matrix decomposition that facilitates theoretical analysis (see, e.g.,
Jeantheau, 1998; Ling and McAleer, 2003; He and Teräsvirta, 2004; McAleer et al., 2009;
Nakatani and Teräsvirta, 2009) and estimation in empirical applications. However, recent em-
pirical evidences suggest that the structure of conditional correlations between certain assets
is time-varying (dynamic), which renders the use of the CCC-MGARCH model inappropriate
for some empirical applications. To this end, many researchers have become interested in de-
signing MGARCH models that explicitly2 accommodate time-varying conditional correlations
(see, e.g., Engle, 2002; Cappiello et al., 2006; Pelletier, 2006; McAleer et al., 2008; and oth-
ers). Despite the importance of specification testing in building and drawing correct inferences
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from econometric models, very little effort has been devoted to designing tests for assessing
the adequacy of the fit of these time-varying conditional correlation MGARCH models to the
data. This article fills this gap in the MGARCH literature by proposing a class of generally ap-
plicable tests for constant conditional correlation and parametric specification of time-varying
conditional correlations.

There are some tests for constant conditional correlations in MGARCH models. These
tests include the Ljung–Box portmanteau test (Bollerslev, 1990), classical tests (e.g., Longin
and Solnik, 1995; Tse, 2000; Engle and Sheppard, 2001; Silvennoinen and Teräsvirta, 2005,
2009a), and the Information matrix test (Bera and Kim, 2002); Bauwens et al. (2006) and
Silvennoinen and Teräsvirta (2009b) provide an extensive review of the MGARCH literature
and most of these tests. Bollerslev (1990) assumes that under the null of constant conditional
correlations, the cross products of the standardized residuals are serially uncorrelated and
uses the Ljung–Box portmanteau test to investigate the adequacy of the null specification.
The absence of serial correlation, however, does not necessarily imply constant conditional
correlations (Bera and Kim, 2002). In addition, Li and Mak (1994) find that the portmanteau
test statistic is not asymptotically χ2-distributed.3 Longin and Solnik (1995) consider three
alternative structures—a time trend, a threshold variable, and a linear function of some variables
in the information set. Because of the large number of parameters in their model, the adequacy
of the null specification relative to each correlation structure is independently assessed using
Likelihood Ratio (LR) tests. Thus, their framework does not admit a joint test for several
departures from the null hypothesis. In general and under the null specification, an overall LR
test is statistically equivalent to the sum of a set of individual LR tests if the individual LR
statistics are asymptotically independently distributed.4 As such, individual LR tests may fail to
detect dependent specification errors that may exist in empirical applications.

Tse (2000) proposes a Lagrange Multiplier (LM) test with lag-1 cross product of standardized
residuals alternative. Silvennoinen and Teräsvirta (2005, 2009a) put forward LM tests with
Smooth Transition Conditional Correlation GARCH (STCC-GARCH) and Double Smooth
Transition Conditional Correlation GARCH (DSTCC-GARCH) alternatives. In the STCC-
GARCH and DSTCC-GARCH models, the conditional correlations change smoothly between
two extreme states as a function of at most two exogenous or endogenous transition variables.
Engle and Sheppard (2001) propose an IID or a Wald test with a pth-order autoregressive
alternative.

These classical tests, however, have a common drawback. It is well known that the LM,
LR, and Wald tests are asymptotically optimal within a class of contiguous alternatives. In this
context, this implies that these classical tests will be consistent against certain forms of time-
varying conditional correlations. In particular, in Silvennoinen and Teräsvirta’s (2005, 2009a)
framework, the outcome of their tests is dependent on the transition variable. Also in Tse’s
and Engle and Sheppard’s works, the use of an exogenous lag order for the alternative model
may under- or overutilize the information in the data, thus biasing the power performance of
their tests. Thus, in empirical applications where the true structure of conditional correlations
is unknown, coupled with the possible lack of empirical or theoretical guidelines to selecting
alternative models, the use of the classical tests may be inappropriate. A test for constant
conditional correlations that is independent of an alternative specification may be quite useful
in these instances.

Bera and Kim (2002) develop an efficient-score form of the information matrix (IM) test for
assessing the constancy of the conditional correlation matrix in a bivariate GARCH model. This
form of the IM test alleviates the poor size performance in finite samples that is usually exhibited
by its outer product gradient counterpart. In contrast to the classical tests, no a priori alternative

3 Accordingly, Li and Mak (1994) introduce a modified portmanteau test statistic that is asymptotically χ2-distributed.
We thank an anonymous referee for pointing this out.

4 In essence, this will require some asymptotic orthogonality conditions on the regressors of the null and alternative
specifications.



TESTING THE STRUCTURE OF CONDITIONAL CORRELATIONS 993

functional form of conditional correlation is needed to derive their test statistic. However, their
IM test is constructed using moment conditions of the bivariate normal distribution. Thus, the
greater is the departure from zero excess kurtosis or other forms of nonnormality, the larger is
the probability of rejecting the null of constant conditional correlation.5

These existing tests for constant conditional correlations are derived under the i.i.d. stan-
dardized error vector and are therefore not robust to the presence of time-varying higher-order
conditional moments of unknown form. Absent from the existing literature, also, is a test that
does not require a particular distributional assumption on the error process. Our generally
applicable test for constant conditional correlations avoids these limitations of the existing
tests.

Testing for only constant conditional correlation may be insufficient to draw valid inferences
from an econometric model, especially in the case where there is evidence against the null
specification. For example, King and Wadhwani (1990), Lin et al. (1994), de Santis and Gerard
(1997), and Longin and Solnik (2001) find evidence in support of strong correlations between
cross-country stock markets during times of financial turbulence but weak or no correlations
outside of these events. These empirical findings may be manifestations of time-varying con-
ditional correlations between stock markets and invalidate the frequently imposed constant
conditional correlation assumption in some empirical works. The inadequacy of the constant
conditional correlation assumption for some data has prompted researchers to design a new
class of MGARCH models that admits flexible structures for conditional correlations. The most
popular time-varying correlation MGARCH model is by Engle (2002), who extends Bollerslev’s
(1990) CCC-MGARCH model by incorporating dynamic conditional correlations (the DCC-
GARCH model). Engle (2002) imposes a multivariate normal distribution on the innovation
process and suggests heterogeneous dynamics, but employs homogeneous dynamics, for con-
ditional correlations. His assumptions have motivated extensions of the DCC-GARCH model
that incorporate some stylized facts of financial time series data. For example, Pelagatti and
Rondena (2006) retain the dynamic specification of the DCC-GARCH model but consider
multivariate, fat-tailed elliptical distributions for the innovation process so as to model excess
kurtosis. Hafner and Franses (2009) put forward a generalized dynamic conditional correlation
(GDCC) model that allows for all correlations to have different dynamics. Billio et al. (2006)
introduce a flexible dynamic conditional correlation (FDCC) model that allows for equal corre-
lation dynamics only within groups of variables. Cappiello et al. (2006) extend the DCC model
to accommodate series-specific news, smoothing parameters, and conditional asymmetries in
correlation dynamics (the AG-DCC model). Billio and Caporin (2009) formulate a model that
nests the DCC, AG-DCC, and FDCC by allowing for constant correlation dynamics only among
blocks of assets that are from the same category.

Other forms of time-varying conditional correlations models have been introduced to the
literature. Tse and Tsui (2002) introduce the time-varying conditional correlation MGARCH
(TVC-MGARCH) model in which the correlation matrix has an autoregressive moving average
type structure similar to that of the DCC-GARCH model. Pelletier (2006) proposes a regime
switching conditional correlation (RSDC) model that allows for a time-invariant correlation
matrix within each regime but possible differences in conditional correlations across regimes,
with a latent Markov chain governing the transition between regimes. More recently, McAleer
et al. (2008) offer the generalized autoregressive conditional correlation (GARCC) model in
which the standardized residuals have a random coefficient vector autoregressive specification
that engenders time-varying conditional correlations. Lee and Long (2009) put forward another
rich class of MGARCH models for which the higher-order conditional dependence structure is
embedded in a copula function.6

5 Nonnormal distributions yield an actual asymptotic significance level greater than that of its counterpart under the
normality assumption. Bera and Kim offer a studentized test statistic as a remedy to the dependency of their statistic
on the normality assumption. However, a studentized variant of a test statistic is not robust to all departures from
normality (see Koenker, 1981; Wooldridge, 1990).

6 We thank an anonymous referee for drawing our attention to Lee and Long’s work on copula.
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We emphasize that, despite the burgeoning interest in designing time-varying conditional cor-
relation MGARCH models, little interest has been paid to constructing tests for the adequacy
of these models. In the existing literature, specification tests for time-varying conditional cor-
relations are of the classical type, for example, that of McAleer et al. (2008) and Silvennoinen
and Teräsvirta (2009a). However, as we have already mentioned, the inherent dependence
of the power performance of classical tests on the type of alternative models warrants more
general specification tests to analyze model adequacy of time-varying conditional correlation
models. Moreover, the structures of most time-varying conditional correlation models do not
emanate from economic theory. The structures are introduced to mostly fit stylized facts of
time series data and ensure positive definiteness of the time-varying conditional correlation
matrix in estimation. Thus, choosing an appropriate alternative model may be quite difficult. In
addition, the different aforementioned distributions and structures for time-varying conditional
correlations highlight the importance of constructing generally applicable specification tests
that are consistent against a wide range of time-varying conditional correlation models, not just
nested models. This will enable reliable statistical inferences from and more widespread use of
time-varying conditional correlation models in empirical applications.

In this article, we develop a class of generally applicable tests for investigating the constancy
of conditional correlations and the parametric specification of time-varying conditional cor-
relations.7 Our tests are predicated on an extension of Hong’s (1999) generalized spectrum
approach that is useful for testing univariate time series. Our extension, called the generalized
cross-spectrum, accommodates multivariate time series. Without modifications, however, the
generalized cross-spectrum cannot be employed to assess the structure of conditional corre-
lations. Specifically, this generalized cross-spectral tool can capture cyclical dynamics induced
by linear and nonlinear cross dependence in various moments of the standardized error vector
but does not permit us to identify the source of these dynamics. To analyze the structure of
conditional correlations, we differentiate the generalized cross-spectrum to yield its generalized
cross-spectral derivative, which is the appropriate device for analyzing various aspects of cross
dependence.

Our proposed tests have several attributes. We require no alternative specifications; therefore
our tests are pure significance tests. That is, the design of our tests does not hinge on an explicit
alternative hypothesis. Unlike the existing tests, no distributional assumption on the observa-
tions is required for deriving our tests. Moreover, no specific estimation method is required for
the parameters; as a result, any

√
T -consistent estimator is admissible. The asymptotic distribu-

tion of the tests is the N(0, 1). Furthermore, our tests are nuisance parameter free in that using
the estimated standardized residuals in lieu of the standardized errors has no impact on this
asymptotic distribution. In addition, the spectral nature of our tests facilitates the detection of
linear and nonlinear misspecifications in conditional correlations.

Our more general test is robust to the presence of time-varying higher-order conditional
moments (e.g., skewness and kurtosis) of unknown form in the conditional density of the
innovation vector. This distinguishing feature renders the test a nontrivial extension of its i.i.d.
counterpart, which is not valid under the null hypothesis of a correctly specified time-varying

7 For concreteness, we clarify what we mean by time-varying (dynamic) conditional correlations. A time-varying
parameter may be (1) a linear or nonlinear function of variables in the information set at time t − 1, (2) a deterministic
function of time (see, e.g., Dahlhaus, 1997), or (3) a linear or nonlinear function of variables in the information set at
time t − 1 and a deterministic function of time. Type 1 can be a stationary process; however, types 2 and 3 are non-
stationary or locally stationary processes. An example of a locally stationary model is the local dynamic conditional
correlation (LDCC) model proposed by Feng (2006). Feng (2006) allows each conditional variance to have a locally
stationary and stationary components and the conditional correlation matrix to be a nonparametric function of the
rescaled time variable (the location variable) and past observations. It is well known that stationary and nonstationary
processes differ in their implications and consequences for forecasting and asymptotic theory. For example, a model of
type 1 can be predicted by an appropriate nonlinear model of variables in its information set whereas a model of type 2
can be predicted by a local moving model. In this article, we abstract from nonstationary processes, and therefore our
concept of “time-varying (dynamic) conditional correlations” refers only to stationary processes (type 1).
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parametric model for conditional correlations.8 Furthermore, the i.i.d. assumption precludes
the existence of, say, time-varying conditional skewness and kurtosis. Time-varying higher-
order conditional moments in time-series data can arise for many reasons, and their existence
cannot be viewed as immaterial. For example, Patton (2006) explains that the monetary policy
objectives of central banks and financial decisions of investors can give rise to time-varying
higher-order dependence structures between exchange rates. His flexible conditional copula
modeling framework confirms the presence of such structure between the Deutsche mark
(euro dollar)–U.S. dollar and yen–U.S. dollar daily exchange rates. Patton (2006) also finds
nonlinearity in time-varying conditional correlation between these exchange rates. Moreover,
the presence of time-varying skewness can affect the time-series properties of lower-order
conditional moments (Harvey and Siddique, 1999, 2000). Specification tests for conditional
correlations that do not account for time-varying higher-order conditional moments will exhibit
poor size performances. The theoretical and empirical relevance of this higher-order moment-
robust feature of our tests underscores one of the essential contributions of this article to the
existing literature.

Our tests do not impose a priori lag order on the design set; rather, we use an adaptive lag-
selection method that allows us to capitalize on the information in the data without sacrificing
power. To test constancy of conditional correlations, the estimated standardized residuals and
conditional correlation are the only inputs needed to carry out the test. To test a specific time-
varying structure for conditional correlations, only the standardized residuals and the vector of
the estimated time-varying conditional correlations are required to execute the test.

The layout of the article is as follows. Section 2 formulates the hypotheses of interest for test-
ing the existence of constant conditional correlations and time-varying parametric specification
of conditional correlations. Section 3 presents and describes the test statistics and procedures
derived from the generalized cross-spectrum. Section 4 establishes the asymptotic theory. Sec-
tion 5 investigates the finite sample performance of the test for constant conditional correlations.
Section 6 provides an application of our tests to a classical asset allocation problem. Section 7
concludes the article. We place a brief outline of the mathematical details in the Appendix. A
well-detailed technical appendix and the GAUSS code for executing the tests are available from
the authors upon request. Throughout this article, we use C to denote an arbitrary bounded
constant, ‖ · ‖ the Euclidean norm, and A∗ the complex conjugate of A.

2. HYPOTHESIS TESTING

For completeness, we first introduce the constant and time-varying conditional correlation
MGARCH models. We then formalize our hypotheses of interest for the structure of conditional
correlations.

2.1. The Constant and Dynamic Conditional Correlation MGARCH Models. Let {Yt} with
Yt = (y1t, y2t , . . . , yNt)′ be an RN-valued process of time series observations that is adapted to a
filtration It−1. Furthermore, suppose

Yt = μt + �tzt,(1)

where μt and �t are measurable with respect to It−1. Let {zt} be a N-variate unobservable
martingale difference sequence (m.d.s.) innovation vector such that E(zt | It−1) = 0 a.s. and
E(ztz′

t | It−1) =�t a.s., �t = [ρij,t] is the matrix of conditional correlations. This m.d.s. assumption
identifies μt as the conditional mean vector of Yt. Assume εt ≡ �tzt is the model error. Note
that the m.d.s. property of {zt} implies that {εt} is m.d.s. such that E(εt | It−1) = 0 a.s. and
E(εtε

′
t | It−1) = �t�t�t a.s. Then the multiplicatively separable matrix �t�t�t is the conditional

8 McAleer et al. (2008) circumvent this inherent drawback of assuming i.i.d. innovations by imposing a random
coefficient autoregressive structure on the innovations.
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variance of Yt. Also, let �t = diag(h1/2
1,t , h1/2

2,t , . . . , h1/2
N,t) be a diagonal matrix of conditional

standard deviations and each hi,t has a univariate GARCH (1, 1) specification so that

hi,t = ωi0 + αiε
2
i,t−1 + βihi,t−1,(2)

with ωi0 > 0, αi > 0, βi > 0, αi + βi < 1, ∀ i = 1 , . . . , N. We remark that other specifications for �t

are admissible in the present context. For example, we could retain �t as a diagonal matrix but
permit dynamic dependence between volatility series as in Jeantheau (1998). If �t is a constant
matrix, then Yt follows a constant conditional correlation MGARCH (CCC-MGARCH) model
(e.g., Bollerslev, 1990). Otherwise, Yt follows a dynamic conditional correlation MGARCH
model.

The literature offers different functional forms for characterizing the time evolution of the
conditional correlation matrix �t (see, e.g., Engle, 2002; Tse and Tsui, 2002; Silvennoinen
and Teräsvirta, 2005, 2009a; Pelletier, 2006; McAleer et al., 2008). Under certain parameter
restrictions, each of these models nests Bollerslev’s (1990) CCC-MGARCH model. We briefly
review some of the specifications of time-varying conditional correlations in MGARCH models.

EXAMPLE 1 (Tse and Tsui, 2002): TVC-MGARCH.

ρij,t = (1 − ζ1 − ζ2)ρij + ζ2ρij,t−1 + ζ1πij,t−1,

πij,t−1 =

M∑
h=1

zi,t−hzj,t−h√√√√( M∑
h=1

z2
i,t−h

)(
M∑

h=1

z2
j,t−h

) ,
(3)

with ζ1, ζ2 ≥ 0 and ζ1 + ζ2 ≤ 1. For this model, ρij,t has an autoregressive moving average
specification that is the convex combination of ρij, ρij,t−1, and πij,t−1, and the parameter ζ2

represents the degree of inertia in time-varying conditional correlations whereas ζ1 represents
the degree of perturbation to ρij,t. The matrix [πij,t−1] is a correlation matrix for a subvector of
the residuals at time t − 1. A necessary condition for the matrix [πij,t−1] to be positive definite
is M ≥ N.

EXAMPLE 2 (Engle, 2002): DCC-GARCH.

ρij,t = qij,t√
qii,t qjj,t

,

qij,t = (1 − ζ1 − ζ2) qij + ζ2qij,t−1 + ζ1zi,t−1zj,t−1, ∀ i, j,
(4)

with ζ1, ζ2 ≥ 0 and ζ1 + ζ2 ≤ 1. For this model each component of ρij,t, qij,t, qii,t, and qjj,t, has
an autoregressive moving average specification, and the matrix [qij,t] is transformed to yield the
correlation matrix [ρij,t].9

9 It is important to note that for our purposes, in Examples 1 and 2 we exclude the joint restriction ζ1 = 0 and
ζ2 > 0 from the quasi-convex set of restrictions given in Tse and Tsui (2002) and Engle (2002). This is because, using
Example 1 for illustration,

ρij,t = (1 − ζ2)ρij + ζ2ρij,t−1

so (1 − ζ2L)ρij,t = (1 − ζ2)ρij ,

where L is the backward shift operator. Then

ρij,t = (1 − ζ2)(1 − ζ2L)−1ρij = ρij .
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EXAMPLE 3 (Pelletier, 2006): RSDC. Pelletier proposes a general regime switching dynamic
correlation matrix of the form

�t =
S∑

i=1

I{�t=i}�i,

where �t is a latent Markov chain process that is independent of the innovation zt and can take
S possible values, �t = 1, 2, . . . ,S, I is the indicator function, and each �i is an N × N constant
correlation matrix. Pelletier analyzes a simple form of this regime switching model:

�t = λ(�t)� + (1 − λ(�t))IN,(5)

where λ(�t) ∈ [0, 1] is a univariate process dictated by �t, � is a constant correlation matrix, and
IN is an N × N identity matrix. For this model, the time-varying conditional correlation matrix
at time t is the convex combination of the correlation matrix in each state—in one state the
innovations are correlated [λ(�t) = 1] and in the other state they are uncorrelated [λ(�t) = 0].
The degree of smoothing for Pelletier’s specification is governed by the transition probabilities.
Pelletier imposes additional conditions for identification of this model.

These correlation structures may generate quite different correlation dynamics. In fact, in
an empirical application with exchange rates, Pelletier finds that the regime switching model
generates smoother time-varying correlations than Engle’s DCC model. The disparities in the
correlation dynamics of the models point to the importance of investigating the adequacy of the
fit of these models to the data. The class of generally applicable specification tests we propose
below can detect departures from the null hypotheses of constant conditional correlation and
correct specification of time-varying conditional correlations and are robust to misspecification
in other aspects of the models.

2.2. Testing the Structure of Conditional Correlations. Consider a bivariate version of the
model in (1). Let θ be the vector of location, scale, and correlation parameters such that θ ∈ � ⊂
RK and � is compact and convex. Assume the parametric model for conditional correlations,
�θ, for the stochastic standardized error vector zt(θ) is such that

�θ = {ρt(θ) : E[z1t(θ)z2t(θ) | It−1] = ρt(θ), θ ∈ � ⊂ R
K},(6)

where ρt(θ) is measurable with respect to It−1 and the functional form of ρt(θ) is specified up to
the unknown finite-dimensional parameter θ.

Let θ0 ∈ � be the true but unknown parameter. Assume ρt(θ0) characterizes the true but
unknown structure of conditional correlations. Furthermore, if the true structure is constant,
we let ρ ≡ ρt(θ0). If the true structure is time-varying, we let ρt ≡ ρt(θ0). Then we say �θ

is correctly specified for time-varying conditional correlations only if ρt ∈ �θ. We say �θ is
misspecified for time-varying conditional correlations only if ρt ∈ �θ. Similarly, �θ is correctly
specified for constant conditional correlations only if ρ ∈ �θ, and �θ is misspecified for constant
conditional correlations only if ρ ∈ �θ. We now rewrite these criteria as follows.

Under the null hypothesis of a correctly specified functional form for the conditional corre-
lation between z1t and z2t we write

H0: Pr{E[z1t(θ0)z2t(θ0) | It−1] = ρt(θ0)} = 1 for some θ0 ∈ �.(7)

Thus, the conditional correlation is equal to the unconditional one for all t; that is, this joint restriction renders ζ2 an
unidentified nuisance parameter under the null hypothesis of constant conditional correlation. We thank an anonymous
referee for pointing this out.
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Similarly, under the alternative hypothesis of an incomplete characterization by ρt(θ) of the
conditional correlation between z1t and z2t we write

HA: Pr{E[z1t(θ)z2t(θ) | It−1] = ρt(θ)} < 1 ∀ θ ∈ �.(8)

Put

mt(θ) ≡ z1t(θ)z2t(θ) − ρt(θ).(9)

Then z1t(θ0)z2t(θ0) = ρt(θ0) + mt(θ0) can be viewed as an auxiliary regression function, with
mt(θ0) representing an MDS regression standardized error. We therefore label mt(θ) as the
“generalized-standardized residual.” Using these notations, the corresponding MDS expres-
sions for the null and alternative hypotheses are, respectively,

H0: E[mt(θ0) | It−1] = 0 a.s.,(10)

HA: E[mt(θ) | It−1] = 0 ∀ θ ∈ �.(11)

Under the MDS assumption on the innovation vector zt, the test statistics for constant condi-
tional correlation and time-varying specification of conditional correlations are identical. Thus,
to avoid redundancy in our proceeding exposition, we discuss the test statistic and procedures
and asymptotic theory only in terms of the specification test for time-varying conditional corre-
lations.

3. TEST STATISTICS AND PROCEDURES

To begin, we say that the real-valued process mt(θ) possesses the “ideal” MDS feature if, for
some θ0 ∈ �, E[mt(θ0) | It−1] = 0. This conditional moment restriction suffers from the “curse
of dimensionality” problem since the conditioning set has an infinite dimension. One way of
circumventing the problem is by making use of the generalized spectral approach by Hong
(1999). However, Hong’s (1999) generalized spectrum approach is univariate, so we extend his
framework to accommodate our hypotheses of interest.

Let zt ≡ zt(θ0) and assume {zt} is a strictly stationary process. Consider a family of conditional
distributions associated with zt given It−1, namely, {G(zt | It−1) : G ∈ G} and suppose G0(zt | It−1)
is the null conditional distribution. We define the conditional characteristic function of zt as

Eθ0

(
eiu′zt | It−1

) =
∫

RN
eiu′zt dG0(zt | It−1), u ∈ R

N, i = √−1,

where Eθ0 (·|It−1) is the conditional expectation taken with respect to G0(z | It−1). The introduc-
tion of this conditional characteristic function permits us to investigate the functional form of
the conditional correlations. We then define the generalized cross-covariance function as

σj (u, v) ≡ cov{eiu′zt(θ) − Eθ0 [eiu′zt(θ) | It−1], eiv′zt−|j |(θ)}, u, v ∈ R
N.

Using this generalized cross-covariance function σj(u, v), we define the generalized cross-
spectrum as

f (ω,u, v) = 1
2π

∞∑
j=−∞

σj (u, v)e−ijω, ω ∈ [−π, π], u, v ∈ R
N.
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That is, f (ω, u, v) is the Fourier transform of σj(u, v), and therefore they contain the same
information. In this framework, the moments of zt need not be finite. This generalized cross-
spectrum is “general” in the sense that it can capture all cyclical dynamics induced by linear
and nonlinear pairwise dependence in various moments of zt and, without further modification,
does not permit us to identify the source of these dynamics.

Now, let m = (m1, m2 , . . . , mN)′ be a N × 1 vector of positive integers with |m| =∑N
c=1mc. The

generalized cross-spectrum f (ω, u, v) can be differentiated to yield its generalized cross-spectral
derivative, which is the device for distinguishing various aspects of cross dependence. To this
end, define the generalized cross-spectral derivative as

f (0,m,0)(ω, 0, v) = ∂m1

∂um1
1

. . . . . .
∂mN

∂umN
N

f (ω,u, v)
∣∣∣∣
u=0

= 1
2π

∞∑
j=−∞

σ
(m,0)
j (0, v)e−ijω,(12)

where the derivative of the generalized cross-covariance function is

σ
(m,0)
j (0, v) = cov

{
N∏

c=1

(izct(θ))mc − Eθ0

[
�N

c=1(izct(θ))mc
∣∣It−1

]
, eiv′zt−|j |(θ)

}
.(13)

For our purposes, where our interest lies in the structure of conditional correlation for the
bivariate vector zt = (z1t, z2t)′, we set m = (1, 1)′. Then using the generalized-standardized
residual mt(θ), we have

σ
(m,0)
j (0, v) = i|m|cov{z1t(θ)z2t(θ) − Eθ0 [z1t(θ)z2t(θ) | It−1], eiv′zt−|j |(θ)}

= i|m|cov[mt(θ), eiv′zt−|j |(θ)]

= (i)2E
{
mt(θ)

[
eiv′zt−|j |(θ) − Eθ(eiv′zt−|j |(θ))

]}
.

(14)

Note that for j > 0, σ(m,0)
j (0, v) = 0 ∀ v ∈ R2 if and only if E[mt(θ0) | z1t−j, z2t−j] = 0 for some

θ0 ∈ � (e.g., Bierens, 1982; Stinchcombe and White, 1998). Clearly, testing this “subordinate”
MDS hypothesis of {E[mt(θ0) | z1t−j, z2t−j] = 0 for some θ0 ∈�} is not necessarily equivalent to its
ideal counterpart of {E[mt(θ0) | It−1] = 0 for some θ0 ∈�}. In particular, and by containment, the
ideal MDS hypothesis implies the subordinate MDS hypothesis, but the converse is not always
true.10 As we will demonstrate below, we derive our generalized cross-spectral derivative tests
from a restricted variant of the aforementioned subordinate hypothesis.

10 If the null hypothesis for the MDS correlation test is rejected, we can further extend the generalized cross-spectral
derivative in (12) to obtain a subclass of specific tests for assessing the type of linear or nonlinear departure from the
null specification. To see this in our bivariate model, consider another bivariate vector, s = (s1, s2)′, of positive integers
that is associated with the auxiliary vector v in the (12) and define |s| =∑2

c=1sc. Then

σ
(m,s)
j (0, 0) = i|m|+|s|cov

{
mt(θ),

2∏
c=1

[zct−|j |(θ)]sc

}
.

Case 1: If we set s = (1, 1)′, then σ
(m,s)
j (0, 0) = cov[mt(θ), z1t−|j |(θ)z2t−|j |(θ)] can be used to test for serial correlation in

conditional correlation. This is similar in spirit to Bollerslev’s (1990) correlation test.

Case 2: If we set s = (2, 2)′, then σ
(m,s)
j (0, 0) = cov[mt(θ), z2

1t−|j |(θ)z2
2t−|j |(θ)] can be used to test for volatility in conditional

correlation.
Case 3: If we set s = (3, 3)′, thenσ

(m,s)
j (0, 0) = cov[mt(θ), z3

1t−|j |(θ)z3
2t−|j |(θ)] can be used to test for skewness in conditional

correlation.
Case 4: If we set s = (4, 4)′, then σ

(m,s)
j (0, 0) = cov[mt(θ), z4

1t−|j |(θ)z4
2t−|j |(θ)] can be used to test for kurtosis in conditional

correlation.
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Under H0, the generalized cross-spectral derivative degenerates to a “flat” spectrum:

f (0,m,0)
0 (ω, 0, v) = 1

2π
σ

(m,0)
0 (0, v), ω ∈ [−π, π], v ∈ R

2.

3.1. Estimating the Generalized Cross-Spectral Derivative. Since {zt} is unobservable, the
derivative of the generalized cross-covariance function in (13) cannot be implemented in this
context. Now suppose we observe a random bivariate sample of size T and Ĩt−1 is set of
this observed information available at time t − 1 such that Ĩt−1 contains some starting val-
ues and Ĩt−1 ⊂ It−1.11 Also, let ρ̃t(θ), z̃t(θ), μ̃t(θ), and �̃t(θ) be measurable with respect to
Ĩt−1. Using Ĩt−1 we obtain θ̂, a

√
T -consistent estimator for θ0, and ẑt ≡ �̃−1

t (θ̂)ε̂t, �̃t(θ̂) ≡
diag(̃h1/2

1,t (θ̂), h̃1/2
2,t (θ̂)), ε̂t ≡ ε̃t(θ̂) = Yt − μ̃t(θ̂), and ρ̂t ≡ ρ̃t(θ̂). We can consistently estimate the

generalized cross-spectral derivative f (0,m,0)(ω, 0, v) using a kernel estimator

f̂ (0,m,0)(ω, 0, v) = 1
2π

T −1∑
j=1−T

(
1 − |j |

T

)1/2

k(j/p)σ̂(m,0)
j (0, v)e−ijω,(15)

with ω ∈ [−π, π], v ∈ R2, and when

σ̂
(m,0)
j (0, v) = 1

(T − |j |)
T∑

t=|j |+1

[ẑ1tẑ2t − ρ̂t]ψ̂t−j (v),(16)

ψ̂t−j (v) = eiv′ẑt−|j | − ϕ̂j (v) and ϕ̂j (v) = (T − |j |)−1∑T
t=|j |+1 eiv′ẑt−|j | is the estimator for the

unconditional-marginal characteristic function of zt−|j|. Also, p ≡ p(T) is a bandwidth and k :
R → [−1, 1] is a symmetric kernel function, for, e.g., the Bartlett kernel

k(x) =
{

1 − |x|, |x| ≤ 1,

0, otherwise,

or the Parzen kernel

k(x) =

⎧⎪⎨⎪⎩
1 − 6x2 + 6|x|3, |x| ≤ 0.5,

2(1 − |x|)3, 0.5 ≤ |x| ≤ 1,

0, otherwise.

The weighting factor
(
1 − |j |

T

)1/2 is a finite sample correction, which can be normalized to equal
one.

Similarly, a consistent estimator for the “flat” generalized cross-spectral derivative f (0,m,0)
0 (ω,

0, v) is

f̂ (0,m,0)
0 (ω, 0, v) ≡ 1

2π
σ̂

(m,0)
0 (0, v), ω ∈ [−π, π], v ∈ R

2.(17)

We note that the estimators f̂ (0,m,0)(ω, 0, v) and f̂ (0,m,0)
0 (ω, 0, v) converge to the same limit under

H0. Thus, our test is based on the divergence between these two estimators. To approximate the
divergence between f̂ (0,m,0)(ω, 0, v) and f̂ (0,m,0)

0 (ω, 0, v), we use the squared L2-norm between

11 The set Ĩt−1 can be considered as a truncated version of It−1.
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(15) and (17) so that

L2
2

[
f̂ (0,m,0)(ω, 0, v), f̂ (0,m,0)

0 (ω, 0, v)
] = πT

2

∫ ∫ π

−π

∣∣f̂ (0,m,0)(ω, 0, v) − f̂ (0,m,0)
0 (ω, 0, v)

∣∣2dωdW(v)

=
T −1∑
j=1

k2(j/p)(T − j)
∫ ∣∣σ̂(m,0)

j (0, v)
∣∣2dW(v),

(18)

where the second equality is by virtue of Parseval’s identity. Moreover, W : R2 → R+ is a
nondecreasing weighting function that weighs the sets symmetric about the origin equally.
Some examples of W(.) are the multivariate independent standard normal cdf or any discrete,
symmetric probability distribution.

3.2. Test Statistics for Conditional Correlations. To design a specification test for time-
varying conditional correlations, we make use of the following points. One, under the null
hypothesis of a correctly specified time-varying parametric model for conditional correlations,
the assumption of conditional homoskedastic or i.i.d. standardized error vector is invalid. Two,
it is well known that most time-series data exhibit time-varying higher-order conditional mo-
ments. Furthermore, there is a growing trend to allow for innovations with nonnormal densities
(see, e.g., Harvey and Siddique, 1999; Bauwens and Laurent, 2005; Patton, 2006; Pelagatti and
Rondena, 2006; Pelletier, 2006). Three, time-varying higher-order conditional moments have
been found to have a significant impact on lower-order conditional moments. Our test is de-
signed to accommodate time-varying higher-order conditional moments of unknown structure
and is therefore robust in this regard. We note that specification tests for conditional correla-
tions that do not account for time-varying higher-order conditional moments will have poor
size performances. Under the m.d.s. assumption, the test statistic that accounts for time-varying
higher-order conditional moments of unknown structure is given as follows:

Q̂1 =
⎡⎣T −1∑

j=1

k2(j/p)(T − j)
∫ ∣∣σ̂(m,0)

j (0, v)
∣∣2dW(v) − Ĉ1

⎤⎦/√
D̂1,(19)

where

Ĉ1 =
T −1∑
j=1

k2(j/p)
1

(T − j)

T∑
t=j+1

|mt(θ̂)|2
∫

|ψ̂t−j (v)|2dW(v),

D̂1 = 2
T −2∑
j=1

T −2∑
l=1

k2(j/p)k2(l/p)

×
∫ ∫ ∣∣∣∣∣∣ 1

T − max(j, l)
·

T∑
t=max(j,l)+1

[
mt(θ̂)

]2
ψ̂t−j (u)ψ̂t−l(v)

∣∣∣∣∣∣
2

dW(u) dW(v),

with mt(θ̂) = (i)2
[
ẑ1tẑ2t − ρ̂t

]
. Here Ĉ1 and D̂1, respectively, are the location and scale factors

that approximate the mean and variance of (18). This test statistic is also valid for testing
constant conditional correlation, by simply replacing ρ̂t with ρ̂.

When testing for constant conditional correlation, imposing the i.i.d. assumption on {zt}
may be adequate. This assumption greatly simplifies the preceding test statistic Q̂1, which
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degenerates to the following:

Q̂2 =
⎡⎣T −1∑

j=1

k2(j/p)(T − j)
∫ ∣∣σ̂(m,0)

j (0, v)
∣∣2dW(v) − Ĉ2

⎤⎦/√
D̂2,(20)

where

Ĉ2 = �̂

∫
σ̂0(v,−v) dW(v)

T −2∑
j=1

k2(j/p),

D̂2 = 2�̂2
∫ ∫

|σ̂0(u, v)|2dW(u) dW(v)
T −2∑
j=1

k4(j/p),

with �̂ = T −1∑T
t=1(ẑ1tẑ2t − ρ̂)2. We note that Ĉ2 and D̂2, respectively, are the location and

scale factors that approximate the mean and variance of (18) under the i.i.d. assumption. We
emphasize that this statistic is only applicable to the test for constant conditional correlation
due to the auxiliary i.i.d. assumption.

4. ASYMPTOTIC THEORY

To reiterate, we limit our discussion of the asymptotic theory to the test for misspecification
of time-varying conditional correlations, Q̂1, given that this test is more general. The following
regularity conditions are needed to derive the null asymptotic distribution of the test statistic
Q̂1.

ASSUMPTION 1. {Yt} is a bivariate GARCH, strictly stationary process as defined in (1) with
E‖Yt‖8 ≤ C, E(zit)4 ≤ C, for i = 1, 2 and E(z1tz2t)4 ≤ C.

ASSUMPTION 2. For each sufficiently large integer q, there exists a strictly stationary process
{z1q,tz2q,t, ρq,t} such that{z1q,tz2q,t − ρq,t} is a q-dependent MDS process. Moreover, (i) for i = 1,
2, E(zit − ziq,t)4 ≤ Cq−η, (ii) E | ρt − ρq,t | 2 ≤ Cq−η for some constant η ≥ 1.

ASSUMPTION 3. Let ρt(θ) be a parametric function for conditional correlation where θ ∈ � is
a parameter in a finite dimensional parameter space that is convex and compact, and for each
θ ∈ �: μt(θ), ρt(θ), and �−1

t (θ) are measurable with respect to It−1; μt(θ), ρt(θ) and �−1
t (θ)

admit continuous derivatives up to order 2 with respect to θ ∈ �; (i) E supθ∈� ‖∇θρt(θ)‖2 ≤
C and E supθ∈� ‖∇θθρt(θ)‖2 ≤ C; (ii) E supθ∈� ‖∇θμt(θ)‖4 ≤ C and E supθ∈� ‖∇θ�

−1
t (θ)‖4 ≤

C; and (iii) E supθ∈� ‖∇θθμt(θ)‖2 ≤ C and E supθ∈� ‖∇θθ�
−1
t (θ)‖2 ≤ C.

ASSUMPTION 4. Let ρ̃t(θ), μ̃t(θ) and �̃t(θ) be measurable with respect to Ĩt−1. Then (i)
limT →∞

∑T
t=1{E[supθ∈� |̃ρt(θ) − ρt(θ)|]2} ≤ C; (ii) limT →∞

∑T
t=1{E[supθ∈� ‖μ̃t(θ) − μt(θ)‖]4} ≤

C; and (iii) limT →∞
∑T

t=1{E[supθ∈� ‖�̃−1
t (θ) − �−1

t (θ)‖]4} ≤ C.

ASSUMPTION 5. Let {zt, ∇θzt(θ0), ρt, ∇θρt(θ0)} be a strictly stationary α-mixing process with
mixing coefficient

∑∞
j=0α(j)(ν−1)/ν ≤ C for some constant ν > 1. Moreover, �0 ≡ E[z1,0z2,0 − ρ0]2

< ∞.

ASSUMPTION 6. θ̂ is an estimator for θ0 ∈ �, that is,
√

T (θ̂ − θ∗) = OP(1), where θ∗ =
p limT →∞ θ̂ and θ∗ = θ0 under H0.

ASSUMPTION 7. W : R2 → R+ is a nondecreasing, integrable weighting function that places
equal weights on sets that are symmetric about the origin. Also, let

∫ ‖v‖4 dW(v) < ∞.
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ASSUMPTION 8. Let (i) k : R → [−1, 1] be a symmetric function that is continuous at zero and
all points in R except a finite number of points; (ii) k(0) = 1; (iii) k(z) ≤ c|z|−b for some b > 1

2 as
z → ∞.

Assumptions 1 and 2 provide regularity conditions for the DGP. Assumption 2 is needed
only under the null hypothesis. This condition states that the m.d.s. {z1tz2t − ρt} can be ap-
proximated by a q-dependent m.d.s. {z1q,tz2q,t − ρq,t} arbitrarily well when q is sufficiently
large. In particular the difference between these two processes goes to zero at a geometric
rate. In essence, Assumption 2 provides the restrictive conditions on the serial dependence in
higher-order moments of {zt}. This assumption also admits ergodicity for {zt}. We note that
condition (i) is derived from the condition E(z1tz2t − z1q,tz2q,t)2 ≤ Cq−η for some constant η ≥
1. To understand this assumption, consider the zero-mean time-varying conditional correlation
MGARCH model of Tse and Tsui (2002) with specification Yt = εt,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hi,t = ωi + αiε
2
i,t−1 + βihi,t−1, i = 1, 2,

ρt = (1 − ζ2 − ζ2)ρ + ζ1ρt−1 + ζ2πt−1,

πt−1 =

2∑
h=1

z1,t−hz2,t−h√√√√( 2∑
h=1

z2
1,t−h

)(
2∑

h=1

z2
2,t−h

) ,

(
z1t

z2t

)
| It−1 ∼ N

[(
0
0

)
,

(
1 ρt

ρt 1

)]
,

εi,t = √hi,t zi,t, i = 1, 2.

We illustrate the conditions for i = 1. With h1,t = ω1 + α1ε
2
1,t−1 + β1h1,t−1 = ω1

1−β1
+ α1

∑∞
k=0

βk
1ε

2
1,t−1−k, we define h1,qt ≡ ω1

1−β1
+ α1

∑q
k=0 β

k
1ε

2
1,t−1−k and z1q,t ≡ ε1,t/h

1/2
1,qt. Then, we have

E(z1t − z1q,t)4 = E

(
ε1,t

h1/2
1,t

− ε1,t

h1/2
1,qt

)4

= E

⎛⎝ε4
1,t

(
h1/2

1,qt − h1/2
1,t

)4(
h1/2

1,qth
1/2
1,t

)4
⎞⎠

≤ E

(
ε4

1,t

(
h1,t − h1,qt

)2
(h1/2

1,qth
1/2
1,t )4

)
≤ C

(
E
(
ε8

1,t

))1/2(
E
(
h1,t − h1,qt

)4)1/2

≤ C
(
E
(
h1,t − h1,qt

)4)1/2 = C

⎛⎜⎝E

⎛⎝α1

∞∑
k=q+1

βk
1ε

2
1,t−1−k

⎞⎠4
⎞⎟⎠

1/2

≤ C

⎛⎝α1

∞∑
k=q+1

βk
1

{
E
(
ε8

1,t−1−k)
}1/4

⎞⎠2

≤ C
β

2q
1

(1 − β1)2
.

Hence, we obtain Assumption 2(i) since β1 < 1. The inequalities follow from (a) h1,t and
h1,qt have a lower bound uniformly in all t and parameter vector θ; (b) (

√
a − √

b)2 ≤ a − b
for a, b ≥ 0; (c) Cauchy-Schwarz and Minkowski inequalities; and (d) moment conditions on
ε1,t. To show Assumption 2(ii), we write ρt = 1−ζ1−ζ2

1−ζ2
ρ + ζ1

∑∞
k=0 ζ

k
2πt−1−k, and define ρq,t ≡

1−ζ1−ζ2
1−ζ2

ρ + ζ1
∑q

k=0 ζ
k
2πt−1−k. Then, E | ρt − ρq,t | 2 ≤ Cq−η is satisfied provided E |πt−1−k | 2 < ∞,
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which is trivially true since for all t and k, πt−1−k is an entry of a correlation matrix and hence is
uniformly bounded in all t.

Assumption 3 imposes regularity conditions on the structure of the dynamic conditional
correlations, conditional means, and conditional variances. Conditions (i) and (ii) along with
Assumption 1 guarantee the existence of E supθ∈� ‖∇θzt(θ)‖4 and E supθ∈� ‖∇θθzt(θ)‖2.

Assumption 4 imposes regularity conditions on the truncated information set Ĩt−1. This as-
sumption ensures that the limit distribution of Q̂a is invariant to any use of starting values. To
understand this, consider a bivariate variant of Bollerslev’s (1990) CCC-GARCH(1,1) model
with specification: Yt = εt where εt(θ) | It−1 ∼ N(0, �t(θ)�t(θ)�t(θ)) with �t(θ) = diag(h1/2

1,t (θ),
h1/2

2,t(θ)), hi,t(θ) = ωi + αiε
2
i,t−1(θ) + βihi,t−1(θ) for i = 1, 2. Then θ = (ω1, α1, β1, ω2, α2, β2, ρ)′,

ρt(θ) = ρ and μt(θ) = 0. The conditions on ρt(θ) and μt(θ) are trivial, so we now show that the
condition on �t(θ) holds. Assume h̃1,0 ∈ Ĩt−1. First note that∥∥�̃−1

t (θ) − �−1
t (θ)

∥∥4 = {∣∣̃h−1/2
1,t (θ) − h−1/2

1,t (θ)
∣∣2 + ∣∣̃h−1/2

2,t (θ) − h−1/2
2,t (θ)

∣∣2}2
.

Thus, it suffices to show that limT →∞
∑T

t=1{E[supθ∈� |̃h−1/2
1,t (θ) − h−1/2

1,t (θ)|4} ≤ C. Note also that

∣∣̃h−1/2
1,t (θ) − h−1/2

1,t (θ)
∣∣ = ∣∣∣∣∣ h̃1,t(θ) − h1,t(θ)

h̃1/2
1,t (θ) h1/2

1,t (θ)
[̃
h1/2

1,t (θ) + h1/2
1,t (θ)

]
∣∣∣∣∣.

By employing recursive substitution, we find that

h̃1,t(θ) − h1,t(θ) = ω1 + α1

t−2∑
k=0

βk
1ε

2
1,t−1−k + αβt−1h̃1,0 − ω1 − α1

t−2∑
k=0

βk
1ε

2
1,t−1−k − αβt−1h1,0(θ).

Then, it follows that

T∑
t=1

E sup
θ∈�0

∣∣̃h−1/2
1,t (θ) − h−1/2

1,t (θ)
∣∣4 ≤

∞∑
t=1

E sup
θ∈�0

∣∣∣∣∣α1β
t−1
1 [̃h1,0 − h1,0(θ)]

2ω3/2
1

∣∣∣∣∣
4

≤ C,

assuming ω1 > 0, 0 < α1, β1 < 1, α1 + β1 < 1, and E(h4
1,0) exists.

Assumption 5 provides restrictions on the nature of the serial dependence in {zt, ∇θzt(θ0),
ρt, ∇θρt(θ0)}. The strictly stationary α-mixing condition is frequently used in the context of
nonlinear time series analysis.12 Assumption 6 states that a

√
T -consistent estimator, θ̂, of θ0

will suffice. This assumption therefore accommodates various asymptotic estimators, including
asymptotically most efficient estimator, and those obtained via MLE and QMLE. The statistical
properties of the QMLE for some of the conditional correlation MGARCH models have been
established in the literature. Jeantheau (1998) proposes a set of necessary conditions under
which the QMLE of multivariate autoregressive process with conditionally heteroskedastic
errors is strongly consistent and verifies these conditions for Bollerslev’s (1990) CCC-GARCH
model. Ling and McAleer (2003) prove consistency and asymptotic normality of the QMLE for
a class of vector ARMA-GARCH models that nests the CCC-GARCH model. More recently,
McAleer et al. (2009) and McAleer et al. (2008) develop sufficient conditions for consistency
and asymptotic normality of the QMLE, respectively, for the ARMA-asymmetric GARCH
model, which admits constant conditional correlations, and the GARCC model, which admits
time-varying conditional correlations.

12 Note that with the measurability assumption on ρt(θ) in Assumption 3(i), we could also assume that {zt , ∇θzt(θ)}
is α-mixing since a measurable function of a finite subset of α-mixing processes is also α-mixing and of the same size
(see, e.g., White, 2000).
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Assumption 7 provides regularity conditions for the weighting function W(.). This assumption
is applicable to any CDF with finite fourth moment. Assumption 8 provides the regularity
conditions for the kernel function. Imposing continuity at zero and condition (ii) assist in
eliminating the bias of the generalized cross-spectral derivative estimator f̂ (0,m,0)(ω, 0, v) as
T → ∞. Condition (iii) dictates the tail behavior of k(.) so that higher-order lags have negligible
impact on the statistical properties of f̂ (0,m,0)(ω, 0, v). Some of the most frequently used kernels
satisfy this assumption, including the Bartlett and Parzen kernels with b = ∞ and the Daniell
and Quadratic-spectral kernels b = 1 and 2, respectively.

We now present the asymptotic distribution of Q̂a, a = 1, 2, under H0.

THEOREM 1. Suppose p = cTλ for 0 < λ < (3 + 1
4b−2 )−1with c ∈ (0, ∞). (i) Let Assumptions

1 to 8 hold. Under H0 and as T → ∞, Q̂1
d−→ N(0, 1). (ii) Let Assumptions 1, 3, 4, and 6–8 hold.

Under H0 and asT → ∞, if {zt | It−1} is i.i.d. (0, �), then Q̂2
d−→ N(0, 1).

A salient feature of Q̂a, a = 1, 2, is that the use of the estimated standardized residuals {ẑt} in
lieu of the true standardized residuals {zt} has no impact on the limit distribution of Q̂a. Hence,
one can ignore the fact that the true parameter value θ0 is unknown and set θ0 to be equal to
θ̂. This substitution is possible because the rate at which the parametric parameter estimator
θ̂ converges exceeds that of the nonparametric kernel estimator f̂ (0,m,0)(ω, 0, v) of f (0,m,0)(ω, 0,
v). As such, the limit distribution of Q̂a is completely governed by f̂ (0,m,0)(ω, 0, v), and using θ̂

in lieu of θ0 has no impact asymptotically. This ensures that any
√

T -consistent estimator will
suffice.

So far our discussions have been centered around the null hypothesis. We now examine the
asymptotic behavior of our test Q̂a under HA.

THEOREM 2. Suppose p = cTλ for λ ∈ (0, 1/2) and c ∈ (0, ∞). Then under the conditions in
Assumptions 1 and 3 to 8 and for a = 1, 2,

p 1/2

T
Q̂a

p
−→

1
D1/2

∞∑
j=1

∫ ∣∣∣σ(m,0)
j (0, v)

∣∣∣2 dW(v)

= 1
D1/2

∫ ∫ π

−π

∣∣f (0,m,0)(ω, 0, v) − f (0,m,0)
0 (ω, 0, v)

∣∣2dωdW(v),

where D = 4π
∫ ∞

0
k4(z) dz �2

0

∫ ∫ ∫ π

−π

|f (ω, v, v′)|2dωdW(v) dW(v′).

Consider the case where E[mt(θ) | z1t−j, z2t−j] = 0 for some j > 0. This yields
∫ | σ(m,0)

j (0,

v) | 2dW(v) > 0 for any weighting function that satisfies Assumption 7. Consequently, P[Q̂a >

c(T )] → 1 for any sequence of constants {c(T) = o(T/p1/2)}. Intuitively, this means that Q̂a

has unitary power at any given level of significance whenever E[mt(θ) | z1t−j, z2t−j] is nonzero
at some lag j > 0. This characteristic of Q̂a suggests that it is sensitive to all forms of model
misspecifications that result in E[mt(θ) | z1t−j, z2t−j] being nonzero at some lag j > 0. To this
end, our tests for the structure of conditional correlations may have low power against certain
functional forms for time-varying conditional correlations.

5. MONTE CARLO STUDY

In this section, we investigate the empirical size and power of our test for constant conditional
correlation and demonstrate how it fares against some existing tests. We choose DGPs with
conditional mean normalized to zero to allow us to focus on the main theme of this article. Thus,
our DGPs are such that Yt = (y1t, y2t)′ = (ε1t, ε2t)′, where εit = √hi,t zi,t for i = 1, 2. To mitigate
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startup effects, for each DGP we discard the first 500 Monte Carlo realizations. We estimate
the bivariate CCC-GARCH models using Bollerslev’s (1990) algorithm; thus our estimates are
QMLE. Also, we do not impose an upper bound on the unconditional variances.

5.1. Experimental Design: The Existence of Constant Conditional Correlations.

5.1.1. Size. To investigate the empirical size of the test under H0, we analyze the following
data generating processes (DGPs):

DGP1 [CCC-GARCH(1,1)]:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

h1,t = 0.4 + 0.15ε2
1,t−1 + 0.8h1,t−1,

h2,t = 0.2 + 0.2ε2
2,t−1 + 0.7h2,t−1,

ρ = 0.2,(
z1t

z2t

)
| It−1

i.i.d.∼ N
[(

0
0

)
,

(
1 ρ

ρ 1

)]
,

DGP2 [CCC-GARCH(1,1)]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

h1,t = 0.4 + 0.15ε2
1,t−1 + 0.8h1,t−1,

h2,t = 0.2 + 0.2ε2
2,t−1 + 0.7h2,t−1,

ρ = 0.8,

(
z1t

z2t

)
| It−1

i.i.d.∼ N
[(

0
0

)
,

(
1 ρ

ρ 1

)]
,

We take DGP1 and DGP2 from Tse (2000). The difference between DGP1 and DGP2 is the
degree of constant conditional correlation. Our other null models are two copula-GARCH
models, labeled DGP3 and DGP4 later. We first define a few terms and then give the specifica-
tions of DGPs 3 and 4. Following Lee and Long (2009), we assume εt = H1/2

t �
−1/2
t ηt where we

define Ht ≡ �t��t (see Subsection 2.1). The subsequent formulation ensures that E(εt | It−1) =
0 a.s. and E(εtε

′
t | It−1) = Ht a.s., and εt also has higher-order moments a.s. For i = 1, 2, we let

ui = Fi(ηi) be the probability integral transform of ηi and Fi be the univariate standard normal
cdf; F12 be the joint cdf with margins F1 and F2; ηt | It−1 ∼ F12(η1, η2; δt) = C(F1(η1), F2(η2);
δt) = C(u1, u2; δt) where C(·) is the implied conditional copula distribution function and δt is
the time-varying or time-invariant copula parameter that governs the higher-order dependence
structure. This association between the joint distribution function F12 with margins F1 and F2

and the copula function is by virtue of Sklar’s Theorem (see, e.g., Patton, 2006; Lee and Long,
2009, and the references cited therein). In essence, a plethora of well-defined joint distributions
with higher-order dependence structures can be generated by combining different margins and
copulas. As such, other margins are permissible; our use of univariate standard normal margins
simplifies the simulation and estimation procedures given that the parameters of these margins
are known. Finally, we suppose E(ηt | It−1) = 0 a.s. and E(ηtη

′
t | It−1) = �t ≡ [�ij,t(δt)] a.s. for

identification. The off-diagonal elements of �ij,t(δt) are extracted from the copula by applying
Hoeffding’s Lemma.13 Our specifications of DGPs 3 and 4, respectively, are as follows:

13 Lee and Long (2009) provide a more detail description of the use of Hoeffding’s Lemma and the construction of
copula-based MGARCH models. To simulate and estimate DGPs 3 and 4, as in Lee and Long (2009), we normalize
the diagonal elements of �t to be 1; this circumvents identification problems. We thank Tae-Hwy Lee for providing us
with his copula codes.



TESTING THE STRUCTURE OF CONDITIONAL CORRELATIONS 1007

DGP3 [Copula-GARCH(1,1)]:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

h1,t = 0.4 + 0.15ε2
1,t−1 + 0.8h1,t−1,

h2,t = 0.2 + 0.2ε2
2,t−1 + 0.7h2,t−1,

ρ = 0.2,

δt = 1 + exp(0.1 + 0.8δt−1 + 0.5u1,t−1 + 0.5u2,t−1),

C(u1t,u2t; δt) = exp{−[(− ln u1t)δt + (− ln u2t)δt ]1/δt}.

DGP4 [Copula-GARCH(1,1)]:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
h1,t = 0.4 + 0.15ε2

1,t−1 + 0.8h1,t−1,

h2,t = 0.2 + 0.2ε2
2,t−1 + 0.7h2,t−1,

ρ = 0.8, δ = 2,

C(u1t,u2t; δ) = (u−δ
1t + u−δ

2t − 1
)−1/δ

.

DGP3 is a Gumbel-based MGARCH model with constant conditional correlation but time-
varying higher-order moments, and DGP4 is a Clayton-based MGARCH model with constant
conditional correlation but time-invariant higher-order moments. We introduce DGPs 3 and 4 in
our analysis to examine the robustness of our tests to the presence of time-varying higher-order
moments and nonnormal, particularly nonelliptical, distributions, which are well-documented
features of financial data.14 We compute Q̂1 for each of these processes. Note that in the presence
of time-invariant higher-order moments, which characterize DGPs 1, 2, and 4, both Q̂1 and Q̂2

have suitable asymptotic distributions. We report the empirical levels for 1,000 Monte Carlo
realizations from samples of size T = 500, 1,000, 2,500.

5.1.2. Power. To analyze the powers of Q̂1 and Q̂2 in discriminating the CCC-MGARCH
model of DGP1 from alternative models with time-varying conditional correlations, we consider
the following DGPs:

DGP5 [TVC-MGARCH(1,1)]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h1,t = 0.4 + 0.15ε2
1,t−1 + 0.8h1,t−1,

h2,t = 0.2 + 0.2ε2
2,t−1 + 0.7h2,t−1,

ρt = 0.07 + 0.8ρt−1 + 0.1πt−1,

πt−1 =

2∑
h=1

z1,t−hz2,t−h√√√√( 2∑
h=1

z2
1,t−h

)(
2∑

h=1

z2
2,t−h

) ,

(
z1t

z2t

)
| It−1 ∼ N

[(
0

0

)
,

(
1 ρt

ρt 1

)]
.

14 For contour plots of these copula distributions refer to, for example, Patton (2006, p. 532).
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DGP6 [Bivariate BEKK(1,1)]:

(
h1,t h12,t

h21,t h2,t

)
=
(

0.20 0.10

0.10 0.20

)
+
(

0.60 0.20

0.20 0.60

)(
h1,t−1 h12,t−1

h21,t−1 h2,t−1

)(
0.60 0.20

0.20 0.60

)′

+
(

0.30 0.10

0.10 0.30

)(
ε2

1,t−1 ε1,t−1ε2,t−1

ε1,t−1ε2,t−1 ε2
2,t−1

)(
0.30 0.10

0.10 0.30

)′

ρt = h12,t√
h1,t h2,t

,(
z1t

z2t

)
| It−1 ∼ N

[(
0

0

)
,

(
1 ρt

ρt 1

)]
.

DGP7 [DCC(1,1)-BGARCH(1,1)]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h1,t = 0.4 + 0.15ε2
1,t−1 + 0.8h1,t−1,

h2,t = 0.2 + 0.2ε2
2,t−1 + 0.7h2,t−1,

ρt = q12t√
q11t q22t

,

q12,t = 0.02 + 0.6q12,t−1 + 0.3z1,t−1z2,t−1,

qii,t = 0.1 + 0.6qii,t−1 + 0.3z2
i,t−1, i = 1, 2(

z1t

z2t

)
| It−1 ∼ N

[(
0

0

)
,

(
1 ρt

ρt 1

)]
.

DGP8 [CCC-DCC Regime Switching]:

h1,t = 0.4 + 0.15ε2
1,t−1 + 0.8h1,t−1,

h2,t = 0.2 + 0.2ε2
2,t−1 + 0.7h2,t−1,

ρt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.02 + 0.5q12,t−1 + 0.4z1,t−1z2,t−1√(

0.1 + 0.5q11,t−1 + 0.4z2
1,t−1

) (
0.1 + 0.5q22,t−1 + 0.4z2

2,t−1

) , if �t = 1

0.2, if �t = 2

f (zt|It−1) =
2∑

�t=1

f N(zt|�t, It−1)f (�t|It−1).

DGP9 [CCC-CCC Regime Switching]:

h1,t = 0.4 + 0.15ε2
1,t−1 + 0.8h1,t−1,

h2,t = 0.2 + 0.2ε2
2,t−1 + 0.7h2,t−1,
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ρt = 0.5 − (�t − 1), �t = 1, 2,

f (zt|It−1) =
2∑

�t=1

f N(zt | �t, It−1)f (�t|It−1).

Some of these alternative models yield misspecifications in only conditional correlations whereas
the others also generate misspecifications in other conditional moments or distribution. Since
our Q̂1 and Q̂2 tests are designed for assessing model adequacy of the conditional correlation
function, these models allow us to analyze the robustness of Q̂1 and Q̂2 to misspecifications in
other aspects of the model.

We take DGP5 from Tse and Tsui (2002). DGP5 is also identical to DGP1 except in the
specification of conditional correlation. In DGP5, the conditional correlation at time t is specified
as the convex combination of the unconditional correlation, and lag-1 conditional correlation
and the sample correlation of {zt−1, zt−2}. Moreover, there exists a strong dynamic dependence
in the time-varying conditional correlations. Using DGP1 to fit the simulated data from DGP5
implies that there will be misspecifications in conditional correlations.15

The BEKK-parameterization of the conditional variance matrix in DGP6 accommodates
dynamic dependence between volatility series and hence has implications for the structure of
time-varying conditional correlations. Using DGP1 to fit the simulated data from DGP6 implies
that the conditional variances and conditional correlations are misspecified.

DGP7 is Engle’s (2002) DCC model in which the time-varying correlation has three com-
ponents, with each component having an autoregressive moving average structure. Unlike the
BEKK specification, this model does not accommodate dynamic dependence in volatility se-
ries. Using DGP1 to fit data from this DCC model will result in misspecifications in conditional
correlations.

DGP8 is motivated by Pelletier’s suggestion of an alternative way of introducing a regime
switching for the correlations. We allow the parameters ζ1 and ζ2 of the correlation function in
Engle’s DCC model in (4) to be a function of the regimes. That is,

ρij,t = qijt√
qii,t qjj,t

,

qij,t = (1 − ζ1(�t) − ζ2(�t))qij + ζ2(�t)qij,t−1 + ζ1(�t)zi,t−1zj,t−1, ∀ t, and i, j = 1, 2,

where �t = 1, 2 is the latent Markov chain process, ζ1(1) = 0.4, ζ1(2) = 0, ζ2(1) = 0.5, and ζ2(2)
= 0. In addition, f (zt | It−1) and fN(zt | �t, It−1) are, respectively, the marginal and conditional
normal densities of zt. Thus, the marginal density is the weighted average of the conditional
densities given �t = 1 and �t = 2. These weighting factors are Pr[�t = 1 | It−1] and Pr[�t = 2 | It−1].
We allow for symmetric parameterization of the transition probabilities between regimes 1 and
2 by choosing p11 = p22 = 0.9. The conditional correlations are dynamic in regime 1 and constant
in regime 2. Note that the unconditional correlation is equal in both regimes. Using DGP1 to fit
data from this CCC-DCC regime switching model will result in misspecifications in conditional
correlations and conditional distribution. The nonnormality of the distribution of DGP8 will not
affect the powers of Q̂1 and Q̂2 because these statistics are robust to distributional assumptions.

DGP9 follows Pelletier’s general specification of a regime switching dynamic correlation
model. The correlations are of opposite signs and constant in both regimes. Transitions between
regimes is governed by the latent Markov process �t. We set the transition probabilities to be
p11 = p22 = 0.9. Similar to DGP8, using DGP1 to fit data from this CCC-CCC regime switching
model will result in misspecifications in conditional correlations and conditional distribution.

We obtain simulated data from DGPs 5, 6, 7, 8, and 9 of sample sizes T = 500, 1,000, 2,500.
Using 500 Monte Carlo realizations, we use DGP1 to fit each these simulated data sets and

15 By construction, misspecification in conditional correlations implies misspecification in conditional covariances.
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estimate and compare the power of our tests to some existing tests for constant conditional
correlations.

5.2. Competing Test Statistics. We also consider the tests of constancy of conditional corre-
lations proposed by Engle and Sheppard (2001), Bera and Kim (2002), and Tse (2000).

To compute Bera and Kim’s (2002) bivariate test statistic, BK, we estimate the constant con-
ditional correlation bivariate GARCH model, compute ẑt and ρ̂ = T −1∑T

t=1 ẑ1tẑ2t, and evaluate
BK using

BK =

[
T∑

t=1

(
a2

1ta
2
2t − 1 − 2ρ̂2)]2

4T (1 + 4ρ̂2 + ρ̂4)
,

where a1t = (ẑ1t − ρ̂ẑ2t)/
√

1 − ρ̂2 and a2t = (ẑ2t − ρ̂ẑ1t)/
√

1 − ρ̂2. Under the assumption that the
bivariate vector zt is normally distributed, BK ∼ χ2

1 asymptotically.
To test of constancy of conditional correlations, Tse (2000) presumes that the time evolution

of conditional correlation can be characterized by the function ρt = ρ + δε1,t−1ε2,t−1.16 Thus,
under the null hypothesis, it suffices to show that δ = 0. To employ Tse’s (2000), we estimate
the constant conditional correlation bivariate GARCH model and obtain the

√
T -consistent

estimator θ̂. We evaluate the score, ∂lt/∂θ′, at θ̂. The corresponding lagrange multiplier statistic
under the null hypothesis is obtained using

TSE = ι′Ŝ(Ŝ′Ŝ)−1Ŝ′ι,

where ι is a T × 1 unit vector, Ŝ is the estimator of the T × N matrix with rows equal to ∂lt/∂θ′,
for t = 1 , . . . , T, evaluated at θ̂, and N is the number of parameters under the alternative model.
This statistic is equivalent to TR2 where R2 is the uncentered coefficient of determination of
the regression ι on Ŝ. We then compare TSE to a suitable χ2

1 critical value.
For the Engle and Sheppard (2001) test of constant conditional correlations, the test proce-

dure is executed as follows: (1) Estimate the univariate GARCH processes and standardize the
residuals for each series; (2) estimate the correlation of the standardized residuals and jointly
standardize the vector of univariate standardized residuals by the symmetric square root decom-
position of �, the constant correlation matrix; (3) compute At ≡ vechu[(�−1/2zt)(�−1/2zt)′ −
I2] where vechu is the vectorization operator that selects the elements above the main diagonal
and �−1/2zt is a bivariate vector of residuals jointly standardized under the null; (4) estimate the
autoregression At = ζ0 + ζ1At−1 + · · · + ζpAt−p + νt. Under the null hypothesis, the intercept
and slope coefficients in (4) should be zero. Then the ES(p) test statistic is

ES(p) = ζ̂B′Bζ̂′

σ̂2
,

where ζ̂ = (ζ̂0, ζ̂1, . . . , ζ̂p )′ and B is a matrix consisting of the regressors. We compare this ES(p)
value to an appropriate χ2

(p+1) critical value.

5.3. Practical Implementation of Q̂1 and Q̂2. To calculate our test statistics Q̂1 and Q̂2,
see (19) and (20), we need a weighting function W(·), kernel function k(·), and an estimate of
the bandwidth p. Our choice of W(·) is the N(0, I2), where I2 is the identity matrix in R2×2.
For our choice of kernel function we use the Bartlett kernel, which has bounded support and

16 Tse also suggests the specification ρt = ρ + δz1,t−1z2,t−1 and mentions that this function cannot be used to obtain
analytic derivatives from the likelihood function.
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is computationally efficient. The simulation results indicate that the choice of weighting and
kernel functions has no qualitative impact on the size and level of our tests.17

5.3.1. Choosing a data-driven bandwidth. We use Hong’s (1999) nonparametric plug-in
method to find the adaptive bandwidth p̂ . For a sketch of this method, define f (q,m,0)(ω, 0, v) as

f (q,m,0)(ω, 0, v) = 1
2π

∞∑
j=−∞

|j |qσ(m,0)
j (0, v)e−ijω,(21)

and let f
(0,m,0)

(ω, 0, v) and f
(q,m,0)

(ω, 0, v) be sample analogues of (12) and (21) evaluated at
some initial bandwidth p , that is,

f
(0,m,0)

(ω, 0, v) ≡ 1
2π

T −1∑
j=1−T

(
1 − |j |

T

)1/2

k(j/p)σ̂(m,0)
j (0, v)e−ijω,(22)

f
(q,m,0)

(ω, 0, v) ≡ 1
2π

T −1∑
j=1−T

|j |q
(

1 − |j |
T

)1/2

k(j/p)σ̂(m,0)
j (0, v)e−ijω.(23)

Assume that, for kernel k(·), its Parzen exponent q exists, that is, ∃ a finite q ∈ R+ such that

k(q) ≡ lim
|z|→0

1 − k(z)
|z|q with k(q) ∈ (0,∞).

Intuitively, the Parzen exponent governs the degree of smoothness for k(·) at 0; the larger is q
the smoother is k(·) at 0. For example, the Bartlett and Parzens kernels have q equal to 1 and
2, respectively.

Then, following Hong, we can show that the theoretically optimal bandwidth that minimizes
the asymptotic integrated mean squared error (IMSE) of the estimator of the generalized cross-
spectral derivative f̂ (0,m,0)(ω, 0, v) in (15) is p0 = c0T1/(2q+1) for some tuning constant c0.18 For
a workable c0, we select its sample counterpart evaluated at p , which is

ĉ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2q(k(q))2∫ ∞

−∞
k2(z) dz

×

∫ ∫ π

−π

|f (q,m,0)
(ω, 0, v)|2dωdW(v)∫ π

−π

[∫
f

(0,m,0)
(ω, 0, v) dW(v)

]2

dω

⎫⎪⎪⎪⎬⎪⎪⎪⎭
1/(2q+1)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2q(k(q))2∫ ∞

−∞
k2(z) dz

×

T −1∑
j=1−T

|j |2q(T − |j |)k
2
(j/p)

∫
|σ̂(m,0)

j (0, v)|2dW(v)

T −1∑
j=1−T

(T − |j |)k
2
(j/p)M̂(j)

∫
σ̂j (v,−v) dW(v)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

1/(2q+1)(24)

with M̂(j) = (T − |j |)−1∑T
t=|j |+1 mt−|j |(θ̂)mt(θ̂) and k(·) has Parzen exponent q. Note that k(·)

can be different from the kernel in, say, (20); however, for ĉ we use the Bartlett kernel. We select

17 We also use the Parzen kernel. The results, not reported here, show that there is no asymptotic cost to the choice
of kernel.

18 This p0 ensures that the optimal convergence rate of n−2q/(2q+1) for the IMSE of f̂ (0,m,0)(ω, 0, v) is achieved.
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TABLE 1
EMPIRICAL SIZE OF TEST FOR CONSTANCY OF CONDITIONAL CORRELATIONS

DGP 1: CCC-MGARCH with ρ = 0.2 DGP 2: CCC-MGARCH with ρ = 0.8

500 1,000 2,500 500 1,000 2,500T
p α 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

10 Q̂1 8.3 5.1 10.0 5.9 11.1 7.0 7.6 3.7 8.8 4.8 8.8 6.1
20 Q̂1 6.0 2.9 9.3 5.4 10.2 6.9 5.8 2.7 7.4 4.6 9.0 5.7
30 Q̂1 5.2 2.0 7.8 4.4 9.4 5.6 4.7 2.2 6.0 3.8 8.6 4.6
40 Q̂1 3.8 1.3 6.5 3.4 8.9 4.7 3.7 1.4 5.4 2.6 8.2 4.1

10 Q̂2 7.2 3.9 7.2 4.3 7.4 4.1 6.5 3.2 6.6 3.7 7.3 4.0
20 Q̂2 7.0 3.2 7.9 3.9 7.8 4.2 6.4 3.2 6.9 4.1 7.2 3.7
30 Q̂2 6.7 3.5 7.5 3.8 6.9 4.1 6.2 3.9 5.9 3.6 7.3 3.1
40 Q̂2 7.2 3.3 7.0 3.8 6.7 3.7 6.2 3.5 6.3 3.4 7.0 3.7

TSE 10.1 5.5 10.7 4.5 10.1 4.6 12.5 7.4 11.0 5.5 10.3 5.7
BK 10.5 5.0 9.7 5.4 8.9 4.4 10.0 4.2 9.9 5.0 9.0 3.7

ES(5) 4.8 2.0 4.6 2.4 6.4 3.1 3.9 1.8 3.8 2.1 5.0 2.4
ES(10) 5.2 2.5 6.1 2.9 6.7 3.0 4.5 1.9 5.3 2.2 6.5 2.5

NOTE: We generate 1,000 Monte Carlo realizations for each DGP. Q̂1 and Q̂2 are the generalized cross-spectral
derivative tests under higher-order conditional moments and i.i.d., respectively, with preliminary bandwidth p equal
to 10, 20, 30, 40; BK represents the Bera and Kim (2002) test statistic; TSE represents Tse’s (2000) test statistic; ES(5)
and ES(10) represent the Engle and Sheppard (2001) test statistic with the lagged value set to 5 and 10.

the integer-valued p̂ = �ĉT 1/(2q+1)� as our adaptive bandwidth. The choice of p should have an
asymptotically negligible impact on p̂ and, consequently, Q̂1 and Q̂2. Thus in our simulation we
investigate the effect of the initial bandwidth p on the size and power of our tests by choosing
p ∈ {10, 11, . . . , 40}. In empirical applications where only a single Q̂1 or Q̂2 is desired, we can
use a range of p to compute a set of p̂ and then evaluate Q̂1 or Q̂2 at p̂∗ for

p̂∗ = max
{

max
p̂

{ln(T ), p̂}
}
.(25)

This choice for p̂∗ guarantees that the IMSE of f̂ (0,m,0)(ω, 0, v) is achieved. The choice of the
function ln (T), though ad hoc, guarantees that p̂ → ∞ at a complementary rate.

For each p̂ , to evaluate the four-dimensional integral of the variance terms in Q̂1 and Q̂2 we
randomly draw the auxiliary vectors u and v from a N(0, I2) distribution and discretize u and v

to generate 30 grid points in R2 to facilitate Gaussian quadrature.

5.4. Simulation Results. Tables 1 and 2 show the empirical sizes of the Q̂1, Q̂2,TSE,BK,
and ES tests for constancy of conditional correlation, assuming nominal sizes of 10% and 5%.
We now focus on DGP1. At T = 500, both Q̂1 and Q̂2 (the tests derived under higher-order
conditional moments and i.i.d. respectively) underreject H0 but not excessively. The rejection
probabilities for Q̂1 are monotonically decreasing in the preliminary bandwidth p . This pattern,
however, becomes less pronounced as T increases. For Q̂2, the rejection probabilities exhibit
a more stable pattern than those of Q̂1; consequently, Q̂2 has better levels than Q̂1 the larger
is p . At T = 1,000, 2,500, Q̂1 overrejects, but not excessively, at lower values of p whereas Q̂2

underrejects, but not excessively.
We now consider DGP2 (the model with the higher degree of conditional correlation). Except

in two cases, and for all T, both Q̂1 and Q̂2 underreject H0 but not excessively. In general, the
differences between the empirical and nominal rejection probabilities decline as T increases. At
the 10% nominal level and for T = 500, 1,000, both Q̂1 and Q̂2 have lower rejection probabilities
than their counterparts in DGP1.

We now focus on the existing tests for constant conditional correlation. For DGP1, the TSE
and BK tests overreject or underreject H0, but not severely. Nevertheless, for T = 500, 1,000
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TABLE 2
EMPIRICAL SIZE OF TEST FOR CONSTANCY OF CONDITIONAL CORRELATIONS

DGP 3: Copula-MGARCH with ρ = 0.2 DGP 4: Copula-MGARCH with ρ = 0.8
Time-varying Gumbel Copula Time-invariant Clayton Copula

500 1,000 2,500 500 1,000 2,500T
p α 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

10 Q̂1 7.9 4.8 8.8 5.1 10.9 6.5 7.0 3.9 9.0 5.0 11.6 5.9
20 Q̂1 6.3 3.0 8.1 4.6 10.1 5.8 4.3 3.0 8.2 4.5 11.1 5.1
30 Q̂1 5.5 2.3 7.5 4.0 9.6 5.1 3.4 2.5 6.2 3.9 10.5 4.9
40 Q̂1 4.1 1.8 6.3 3.5 8.8 4.6 3.0 1.9 5.2 2.8 9.7 4.5

10 Q̂2 36.2 32.5 34.3 30.8 35.1 31.7 7.1 3.4 7.1 3.9 8.6 4.0
20 Q̂2 37.0 33.4 36.4 34.0 36.9 33.1 7.2 3.6 8.1 4.4 9.0 4.1
30 Q̂2 36.4 33.0 35.5 32.8 36.1 31.8 7.4 3.9 7.8 4.0 9.3 4.5
40 Q̂2 37.3 33.6 35.1 32.1 35.9 31.5 8.0 4.1 7.7 3.7 9.3 4.6

TSE 50.9 45.6 45.1 40.8 36.1 37.2 14.2 8.3 13.6 7.2 12.1 7.4
BK 70.1 50.3 98.1 95.4 100.0 100.0 0.0 0.0 0.0 0.0 1.9 1.1

ES(5) 96.3 95.0 100.0 100.0 100.0 100.0 6.1 3.9 7.2 4.1 9.1 4.9
ES(10) 98.5 97.2 100.0 100.0 100.0 100.0 8.0 3.6 9.5 5.3 11.9 6.0

NOTE: We generate 1,000 Monte Carlo realizations for each DGP. Q̂1 and Q̂2 are the generalized cross-spectral
derivative tests under higher-order conditional moments and i.i.d., respectively, with preliminary bandwidth p equal
to 10, 20, 30, 40; BK represents the Bera and Kim (2002) test statistic; TSE represents Tse’s (2000) test statistic; ES(5)
and ES(10) represent the Engle and Sheppard (2001) test statistic with the lagged value set to 5 and 10.

the TSE and BK tests have the best rejection probabilities of all the tests. The TSE test has
the best rejection probabilities for T = 2,500. At the prespecified lag order of 5 and 10, the ES
test underrejects H0 more than Q̂2 and has the least favorable size properties. For DGP2, the
TSE test overrejects at T = 500, 1,000 but achieves the best rejection probabilities at T = 2,500.
The BK test has the best rejection probabilities at T = 500, 1,000. The ES test continues to
underreject H0 for all T. Similar to Q̂1 and Q̂2, the TSE test appears to be slightly sensitive to
the degree of constant conditional correlations.

Under DGP3 (the model with time-varying higher-order conditional moments) we expect
Q̂1 to have the best size properties for all T. This is confirmed by our simulation results. The
differences between the empirical and nominal rejection probabilities associated with Q̂1 are
small, although, for a fixed T, these differences tend to increase with p , but for a fixed p , these
differences tend to decrease with T. The BK and ES tests severely overreject H0. The TSE and
Q̂2 tests overreject H0 but not as much as the ES or BK tests. Under DGP4 (the model with
time-invariant higher-order conditional moments), the aforementioned trends associated with
Q̂1 also hold. Q̂2 underrejects H0 but not severely. However, the rejection probabilities of Q̂2

become favorable as T increases. The BK test severely underrejects H0 for all T. For the ES
test, the differences between the empirical and nominal rejection probabilities decrease in lag
order for a given T and decrease in T for a given lag order. The TSE test overrejects but not
excessively. Thus for DGP4, Q̂1 and Q̂2 have the best size properties. Additional results, not
reported here, from DGP4 with a Plackett copula evaluated at shape parameter δ = 4 in lieu of
the Clayton copula show that the BK test attains empirical rejection probabilities in excess of
95% for T ≥ 1,000 whereas all other tests display favorable size properties. All the preceding
results suggest that unlike existing tests for constant conditional correlation, the Q̂1 test is robust
to the presence of time-varying higher-order moments whereas both the Q̂1 and Q̂2 tests are
robust to the presence of time-invariant higher-order moments and nonelliptical distributions.

Tables 3–7 contain the empirical corrected and uncorrected powers against the time-varying
conditional correlation alternatives, DGPs 5–9. We use the empirical critical values obtained
under DGP1 to compute these empirical corrected powers. We consider nominal levels of 10%
and 5%. We note that our empirical corrected and uncorrected powers are very similar. Thus,



1014 MCCLOUD AND HONG

TABLE 3
EMPIRICAL POWER OF TEST FOR CONSTANCY OF CONDITIONAL CORRELATIONS

DGP 5: TVC-MGARCH
ρt = 0.07 + 0.8ρt−1 + 0.1ψ t−1

ACV ECV

500 1,000 2,500 500 1,000 2,500

p α 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

10 Q̂1 85.0 78.0 98.4 97.8 100.0 100.0 84.6 74.0 100.0 100.0 100.0 100.0
20 Q̂1 83.3 74.8 99.2 98.0 100.0 100.0 86.2 79.8 100.0 100.0 100.0 100.0
30 Q̂1 79.6 71.0 98.8 97.2 100.0 100.0 86.8 78.0 100.0 100.0 100.0 100.0
40 Q̂1 76.0 64.4 98.6 96.4 100.0 100.0 85.8 76.0 100.0 100.0 100.0 100.0

10 Q̂2 8.8 6.0 10.2 6.2 13.3 7.1 13.4 7.0 13.6 7.6 15.0 10.1
20 Q̂2 9.8 5.0 10.0 5.2 13.0 6.9 14.4 6.8 13.6 6.4 15.2 10.5
30 Q̂2 10.6 4.6 9.0 5.0 12.5 6.4 13.8 7.0 13.4 6.0 14.9 10.3
40 Q̂2 8.8 4.4 8.2 4.0 11.1 5.9 12.4 6.4 13.0 6.2 15.1 9.7

TSE 32.4 22.8 45.0 34.0 51.2 41.6
BK 15.8 10.2 18.4 13.2 34.0 26.6

ES(5) 12.8 6.6 28.8 20.8 40.3 36.8
ES(10) 11.6 6.8 27.2 18.2 35.2 33.1

NOTE: We generate 500 Monte Carlo realizations for each DGP. Q̂1 and Q̂2 are the generalized cross-spectral derivative
tests under higher-order conditional moment and i.i.d., respectively, with preliminary bandwidth p equal to 10, 20, 30,
40; BK represents the Bera and Kim (2002) test statistic; TSE represents Tse’s (2000) test statistic; ES(5) and ES(10)
represent the Engle and Sheppard (2001) test statistic with the lagged value set to 5 and 10.

TABLE 4
EMPIRICAL POWER OF TEST FOR CONSTANCY OF CONDITIONAL CORRELATIONS

DGP 6: BEKK

ACV ECV

500 1,000 2,500 500 1,000 2,500

p α 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

10 Q̂1 81.8 75.2 98.6 98.0 99.8 99.8 80.8 71.4 98.4 96.1 99.4 97.8
20 Q̂1 77.8 69.4 98.4 97.8 99.8 98.4 81.4 74.4 98.1 96.9 99.8 97.6
30 Q̂1 72.8 61.0 97.4 96.4 99.0 97.8 80.4 71.4 98.0 97.1 99.0 97.6
40 Q̂1 68.2 54.6 96.8 94.6 98.4 96.6 78.2 68.2 97.3 96.0 98.4 96.6

10 Q̂2 38.2 31.0 70.8 60.4 99.6 98.4 47.2 33.8 76.0 62.4 99.8 99.0
20 Q̂2 40.6 31.0 71.8 62.2 99.8 98.4 46.8 36.6 76.8 63.8 100.0 98.8
30 Q̂2 38.2 30.8 69.0 58.4 99.0 98.4 45.6 33.8 75.4 61.8 99.6 98.6
40 Q̂2 35.8 27.4 65.0 53.6 98.8 98.0 43.8 32.8 72.2 59.0 99.0 98.4

TSE 72.4 61.4 89.6 83.6 100.0 99.8
BK 10.4 4.2 11.8 6.4 11.4 7.4

ES(5) 4.2 2.0 6.8 2.4 11.0 6.0
ES(10) 5.4 2.8 6.4 3.4 11.6 5.2

NOTE: We generate 500 Monte Carlo realizations for each DGP. Q̂1 and Q̂2 are the generalized cross-spectral derivative
tests under higher-order conditional moment and i.i.d., respectively, with preliminary bandwidth p equal to 10, 20, 30,
40; BK represents the Bera and Kim (2002) test statistic; TSE represents Tse’s (2000) test statistic; ES(5) and ES(10)
represent the Engle and Sheppard (2001) test statistic with the lagged value set to 5 and 10.

the rankings of our tests relative to the existing tests are identical regardless of our benchmark
empirical power. We discuss only the empirical corrected powers in the ensuing analysis.

Under DGP5, the time-varying conditional correlations possess a high degree of inertia, and
hence the perturbations to conditional correlations are small. This DGP allows us to assess the
sensitivity of our constant correlation tests to detecting minimal time-variation in conditional
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TABLE 5
EMPIRICAL POWER OF TEST FOR CONSTANCY OF CONDITIONAL CORRELATIONS

DGP 7: DCC(1,1)-BGARCH(1,1)

ρt = q12t√
q11t q22t

ACV ECV

500 1,000 2,500 500 1,000 2,500T
p α 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

10 Q̂1 99.4 98.6 100.0 100.0 100.0 100.0 99.2 98.2 100.0 100.0 100.0 100.0
20 Q̂1 99.2 98.0 100.0 100.0 100.0 100.0 99.4 98.8 100.0 100.0 100.0 100.0
30 Q̂1 98.2 96.2 100.0 100.0 100.0 100.0 99.4 98.0 100.0 100.0 100.0 100.0
40 Q̂1 96.6 93.8 100.0 100.0 100.0 100.0 99.2 96.0 100.0 100.0 100.0 100.0

10 Q̂2 99.0 98.4 99.8 99.8 100.0 100.0 99.2 98.8 99.8 99.8 100.0 100.0
20 Q̂2 99.2 98.2 99.8 99.8 100.0 100.0 99.2 98.8 99.8 99.8 100.0 100.0
30 Q̂2 98.4 97.6 99.8 99.8 100.0 100.0 98.8 98.0 99.8 99.8 100.0 100.0
40 Q̂2 97.8 97.0 99.8 99.8 100.0 100.0 98.2 97.6 99.8 99.8 100.0 100.0

TSE 100.0 100.0 100.0 100.0 100.0 100.0
BK 92.6 88.8 99.8 99.4 100.0 100.0

ES(5) 100.0 100.0 100.0 100.0 100.0 100.0
ES(10) 100.0 100.0 100.0 100.0 100.0 100.0

NOTE: We generate 500 Monte Carlo realizations for each DGP. Q̂1 and Q̂2 are the generalized cross-spectral derivative
tests under higher-order conditional moment and i.i.d., respectively, with preliminary bandwidth p equal to 10, 20, 30,
40; BK represents the Bera and Kim (2002) test statistic; TSE represents Tse’s (2000)test statistic; ES(5) and ES(10)
represent the Engle and Sheppard (2001) test statistic with the lagged value set to 5 and 10.

TABLE 6
EMPIRICAL POWER OF TEST FOR CONSTANCY OF CONDITIONAL CORRELATIONS

DGP 8: CCC-DCC Regime Switching

ACV ECV

500 1,000 2,500 500 1,000 2,500T
p α 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

10 Q̂1 72.6 61.2 97.2 94.4 100.0 100.0 78.2 58.0 97.2 93.0 100.0 100.0
20 Q̂1 65.6 56.0 95.8 91.4 100.0 100.0 71.0 60.8 96.4 91.2 100.0 100.0
30 Q̂1 57.2 45.8 91.8 88.2 100.0 100.0 68.2 55.0 93.6 89.4 100.0 100.0
40 Q̂1 49.8 34.2 90.4 82.6 100.0 100.0 65.2 49.8 92.8 87.6 100.0 100.0

10 Q̂2 70.8 60.8 96.0 92.8 100.0 100.0 75.2 65.0 97.4 94.8 100.0 100.0
20 Q̂2 69.8 59.2 94.8 91.4 100.0 100.0 74.6 67.2 97.0 92.6 100.0 100.0
30 Q̂2 65.8 54.8 92.6 90.4 100.0 100.0 73.2 61.4 95.2 91.6 100.0 100.0
40 Q̂2 60.0 51.0 91.6 88.4 100.0 100.0 68.4 56.8 93.4 90.2 100.0 100.0

TSE 95.8 94.2 100.0 100.0 100.0 100.0
BK 64.8 58.2 89.6 87.2 99.8 99.6
ES(5) 95.4 93.2 100.0 100.0 100.0 100.0
ES(10) 91.4 87.4 100.0 99.8 100.0 100.0

NOTE: We generate 500 Monte Carlo realizations for each DGP. Q̂1 and Q̂2 are the generalized cross-spectral derivative
tests under higher-order conditional moment and i.i.d., respectively, with preliminary bandwidth p equal to 10, 20, 30,
40; BK represents the Bera and Kim (2002) test statistic; TSE represents Tse’s (2000) test statistic; ES(5) and ES(10)
represent the Engle and Sheppard (2001) test statistic with the lagged value set to 5 and 10.

correlations. We expect Q̂1 to be more powerful than Q̂2. This is confirmed by our simulation
results. Q̂1 is the most powerful, with power reaching 100% when T = 1,000. The TSE test is
more powerful than the Q̂2, BK, and ES tests. At T = 2,500, the powers of the ES test are less
than 45% and exceed those of Q̂2 and BK. For all sample sizes, the powers of Q̂2 are slightly
above the nominal levels, which render Q̂2 the least powerful test under DGP5.
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TABLE 7
EMPIRICAL POWER OF TEST FOR CONSTANCY OF CONDITIONAL CORRELATIONS

DGP 9: CCC-CCC Regime Switching
ρ1 = 0.5, ρ2 = −0.5

ACV ECV

500 1,000 2,500 500 1,000 2,500T
p α 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

10 Q̂1 51.2 36.8 90.0 82.6 100.0 100.0 50.0 33.0 90.0 79.6 100.0 100.0
20 Q̂1 41.6 30.4 85.6 76.4 100.0 100.0 47.6 36.2 88.0 75.6 100.0 99.8
30 Q̂1 34.2 22.2 77.8 69.0 100.0 99.8 45.4 31.4 82.2 71.8 100.0 99.8
40 Q̂1 28.6 16.6 71.8 58.2 99.8 99.4 41.4 28.6 80.0 67.0 99.8 99.6

10 Q̂2 48.0 35.0 86.4 78.2 100.0 100.0 58.4 39.6 89.0 80.0 100.0 100.0
20 Q̂2 46.4 33.8 83.6 74.8 100.0 100.0 54.8 40.8 88.4 76.6 100.0 100.0
30 Q̂2 42.6 31.2 79.4 71.0 100.0 99.8 50.4 36.8 85.2 74.6 100.0 99.8
40 Q̂2 38.2 30.4 76.2 66.0 99.8 99.4 46.8 34.0 81.0 70.0 99.8 99.6

TSE 94.6 91.2 99.6 99.2 100.0 100.0
BK 100.0 99.2 100.0 100.0 100.0 100.0

ES(5) 93.4 89.0 99.6 98.4 100.0 100.0
ES(10) 89.8 82.6 99.4 99.0 100.0 100.0

NOTE: We generate 500 Monte Carlo realizations for each DGP. Q̂1 and Q̂2 are the generalized cross-spectral derivative
tests under higher-order conditional moment and i.i.d., respectively, with preliminary bandwidth p equal to 10, 20, 30,
40; BK represents the Bera and Kim (2002) test statistic; TSE represents Tse’s (2000) test statistic; ES(5) and ES(10)
represent the Engle and Sheppard (2001) test statistic with the lagged value set to 5 and 10.

DGP6 admits volatility interactions along with time-varying conditional correlations and is
misspecified for conditional variances and conditional correlations. Q̂1 is the most powerful
when T = 500, 1,000, but the TSE test slightly dominates in power when T = 2,500 to attain
optimal power at the 10% nominal level. The powers of Q̂1 and Q̂2 are very similar when T =
2,500. For all sample sizes, the Q̂2 test dominates the BK and ES tests; the ES test has powers
less than 12% whereas the BK test has powers closer to the nominal levels.

We now consider DGP7. The results show that all five tests have excellent power under
DGP7. At T = 500, we find that the TSE and ES tests attain perfect power whereas, at the 10%
level, the Q̂2 and Q̂1, respectively, achieve powers in excess of 99% and 98%, and the BK test
achieves power in excess of 93%. At T = 1,000, Q̂1 attains perfect power whereas Q̂2 and BK
achieve identical powers of 99.8% at the 10% level. At T = 2,500, all test are equally powerful.

DGP8 is a latent hybrid of a constant conditional correlation model and dynamic conditional
correlation model and has a nonnormal conditional distribution. Thus under DGP6, DGP1 is
misspecified for conditional correlations and conditional distribution. At T = 500, the BK test
is the least powerful whereas TSE is the most powerful followed by the ES test. As T increases,
the gap in powers between the TSE and ES, Q̂1 and Q̂2 tests tapers off. At T = 1,000, TSE and
ES achieve perfect power, Q̂1 and Q̂2 attain power in excess of 90% whereas BK attains power
slightly less than 90%. At T = 2,500, Q̂1 and Q̂2 achieve perfect power whereas BK attains
power slightly less than 100%.

DGP9 is also regime switching but the conditional correlations are constant in both regimes.
For all T = 500, 1,000, 2,500, the BK test is the most powerful and reaches optimal power except
for the case when T = 500 and the nominal level is 5%. The TSE and ES tests achieve similar
powers, greater than 98%, when T = 1,000. There is a drastic increase in the powers of Q̂1

and Q̂2 as T increases. The Q̂1 and Q̂2 tests are the least powerful except when T = 2,500 n in
which case Q̂1 and Q̂2 realize their maximum powers of 100% at lower levels of the preliminary
bandwidth.
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To sum up, we observe:

• The empirical sizes of the i.i.d. test, Q̂2, are lower than their nominal counterparts and
insensitive to the choice of preliminary bandwidth. The empirical sizes of the higher-
order conditional moment test, Q̂1, decrease monotonically as the preliminary bandwidth
increases, but this pattern becomes less pronounced as the sample size increases. Sample
sizes in excess of 1,000 are more desirable for the generalized cross-spectral derivative
tests.

• Unlike existing tests, our Q̂1 test is robust to the presence of time-varying higher-order
moments, and both Q̂1 and Q̂2 are robust to the presence of time-invariant higher-order
moments and nonelliptical distributions.

• The TSE and BK tests have favorable size properties in the presence of a normal error
distribution.

• The Q̂1 test is more powerful than the Q̂2 test in identifying time-varying conditional
correlations even when these variations are small, e.g., the time-varying correlation
MGARCH model (DGP5).

• All tests, Q̂1, Q̂2, TSE, BK, and ES, have good power in discriminating between constant
conditional correlation and time-varying conditional correlations that evolve according
to Engle’s DCC specification. The TSE test is the most powerful in this case.

• The Q̂1 is not always the most powerful but has good power against all time-varying
conditional correlation DGPs considered in our simulation study.

6. EMPIRICAL APPLICATION

Engle and Colacito (2006) provide an interesting analysis that quantifies the benefit of know-
ing the true structure of time-varying conditional correlations within the context of a classical
asset allocation framework. Engle and Colacito prove that the infimum of the ratio of the
portfolio variances associated with an incorrect estimate of the covariance matrix to that asso-
ciated with the true covariance matrix is equal to 1. This variance inequality, which holds for
an arbitrary vector of expected returns and any required excess return, provides the basis for
testing the relative performance of time-varying covariance models. They fit to the data a set
of multivariate volatility models, including the DCC and asymmetric DCC (ADCC), and select
the model that delivers the lowest estimate of the portfolio variance over a range of expected
return vectors. They assume this minimum-variance model is the true model. Hence, holding
fixed the expected return vector, the ratio of the estimated portfolio standard deviation of this
true model to that of an alternative model is an estimate of the increase in risk from using the
incorrect volatility model. By exploiting the symmetrical nature of the asset allocation problem
and holding portfolio volatility constant, Engle and Colacito label this increase in risk as the
gain in required return from using the true relative to the estimated time-varying covariances.

To value the correlation information, Engle and Colacito simulate a time series of returns
using the estimated parameters of the ADCC model that was fitted to the real data but fix
the variances of the simulated data to be the unconditional variances of the real data. They
approximate the gain in required return that could be demanded by an investor, using the true
ADCC model in lieu of the incorrect CCC model, to be at most 23%. Given the dependence of
their valuation methods on model adequacy, we use our generalized cross-spectral derivative
test for the structure of conditional correlations to assess whether the ADCC model adequately
captures the dynamics of the conditional correlations in their data.

The first set of bivariate data in Engle and Colacito consists of daily data of S&P500 (ISPCS00)
and 10-year bond (CTYCS00) futures from DataStream for the time span August 26, 1988, to
August 26, 2003.19 The second set consists of daily data on Dow Jones Industrials and S&P500

19 Silvennoinen and Teräsvirta (2009a, 2009b) also use this data set.
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FIGURE 1

TIME SERIES OF S&P500 FUTURES AND 10-YEAR BONDS FUTURES FROM 8/26/88 TO 8/26/03; N = 3,911

FIGURE 2

TIME SERIES OF S&P500 AND DOW JONES INDUSTRIALS FROM 2/4/93 TO 7/22/03; N = 2,636

Indexes from Yahoo! Finance for the time period 2/4/1993 to 7/22/2003.20 In Figures 1 and 2,
we replicate Engle and Colacito’s time plots for the first and second sets of data (low- and
high-correlated data), respectively.

20 Details on these data are in Engle and Colacito (2006).
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6.1. Estimation and Generalized Cross-Spectrum Test Results. We use our generalized cross-
spectrum derivative test, Q̂1, that accounts for time-varying higher-order conditional moments.
This is the same Q̂1 we use in our simulation study; we compute the Q̂1 as outlined in the
preceding section. We first test for constant conditional correlation. If we fail to accept the null
specification, we then test for adequate specification of time-varying conditional correlations.
To execute the first test, we fit a CCC model to the data. As in Engle and Colacito, we choose
the GARCH(1,1) specification for the volatility functions of the CCC model. To estimate the
DCC and ADCC models, we adopt the exact specifications utilized by Engle and Colacito.
Thus, the specification for the ADCC model is Yt = H1/2

t ηt, where

Ht =
(

h1/2
1,t 0

0 h1/2
2,t

)(
1 ρt

ρt 1

)(
h1/2

1,t 0

0 h1/2
2,t

)
,

h1,t = ω1 + α1y2
1,t−1 + β1h1,t−1 + γ1d1,t−1y2

1,t−1,

h2,t = ω2 + α2y2
2,t−1 + β2h2,t−1 + γ2d2,t−1y2

2,t−1,

ρt = h∗
12,t

/√
h∗

1,th
∗
2,t

h∗
1,t = (1 − ζ1 − ζ2 − ζ3/2

)+ ζ1z2
1,t−1 + ζ2h1,t−1 + ζ3d1,t−1z2

1,t−1,

h∗
2,t = (1 − ζ1 − ζ2 − ζ3/2

)+ ζ1z2
2,t−1 + ζ2h2,t−1 + ζ3d2,t−1z2

2,t−1,

h∗
12,t = φ12

(
1 − ζ1 − ζ2

)− φ3ζ3 + ζ1z1,t−1z2,t−1 + ζ2h12,t−1 + ζ3(d1,t−1z1,t−1)(d2,t−1z2,t−1),

and ηt
iid∼ N(0, I2). Moreover, d1,t and d2,t equal 1 for negative values of y1,t and y2,t and zero

otherwise. Also, φ12 and φ3 are the average sample correlation of returns and the average of the
asymmetric component (d1,t−1z1,t−1)(d2,t−1z2,t−1), and z1,t and z2,t are the standardized residuals.
The specification of the DCC model is in the previous section. All the parameter estimates are
QMLE.

Table 8 contains the variance and correlation parameter estimates for all three models and
both data sets. The qualitative implications of these estimates are parallel to those of Engle and
Colacito. For the low-correlated data, Figure 3 displays the results of our analysis, where we plot
the Q̂1 test statistic under various null specifications against an integer sequence of preliminary
lag orders. We include two unmarked horizontal demarcations in this figure to represent the
standard normal critical values at the 1% and 5% significance levels. The curve labeled CCC
confirms Engle and Colacito’s finding that the assumption of constant conditional correlation
is inconsistent with the data for S&P500 and 10-year bond futures. We use Equation (25) to
obtain the optimal bandwidth, p̂∗, for the DCC and ADCC model, which is 28. The DCC model
appears inconsistent with the data at the 5% significance level but consistent with the data at
the 1% significance level. However, at both significance levels, the ADCC curve reveals that
the ADCC model adequately characterizes the dynamics of conditional correlations in these
data. These results suggest Engle and Colacito’s approximation of the gain in expected return
that can be achieved by using the true structure of the time-varying conditional correlations is
accurate.

For the high-correlated data, Figure 4 shows the results of our Q̂1 test statistic. These results
are all in excess of the standard normal critical value at the 1% significance level; consequently
the horizontal demarcations in Figure 3 are not needed in Figure 4. In particular, for Figure 4,
we see that the assumption of constant conditional correlation is at odds with the data. The DCC
curve indicates that the DCC model is inconsistent with the dynamics of conditional correlations.
Also, the ADCC curve suggests that the ADCC model does not provide an accurate fit to the
data at the conventional significance levels. Thus, for the high-correlated Dow Jones Industrials
and S&P500 data, Engle and Colacito’s estimated value of knowing the true structure of the
time-varying conditional correlations may have been underestimated.
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FIGURE 3

GENERALIZED CROSS-SPECTRAL DERIVATIVE TESTS FOR THE S&P500 FUTURES AND 10-YEAR BONDS FUTURES. THE LEFT PANEL

USES THE BARTLETT KERNEL AND THE RIGHT PANEL USES THE PARZENS KERNEL. THE TWO UNMARKED HORIZONTAL LINES

REPRESENT THE STANDARD NORMAL CRITICAL VALUES AT THE 1% AND 5% SIGNIFICANCE LEVELS.

FIGURE 4

GENERALIZED CROSS-SPECTRAL DERIVATIVE TESTS FOR THE S&P500 AND DOW JONES INDUSTRIALS DATA. THE LEFT PANEL USES

THE BARTLETT KERNEL AND THE RIGHT PANEL USES THE PARZENS KERNEL.

7. CONCLUSION

Many researchers have echoed the importance of the structure of conditional correlations
for numerous types of economic and financial decisions including optimal portfolio diversifica-
tion and hedging and risk management. The different structures for conditional correlations in
multivariate GARCH models that have been put forward warrant general specification tests
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to discriminate among competing models and obtain reliable inferences in empirical applica-
tions. However, little attention has been paid to general specification tests for the adequacy
of these structures, specifically time-varying structures, for conditional correlations. Using a
unified framework, we introduce a class of generally applicable tests for assessing the existence
of constant conditional correlations and parametric specification of time-varying conditional
correlations. Our tests are robust to time-varying higher-order conditional moments, for exam-
ple, skewness and kurtosis, of unknown form in the conditional density of the innovation vector.
Time-varying higher-order conditional moments in time-series data can arise for many reasons,
and their existence cannot be viewed as immaterial. It has been argued that monetary policy
objectives of central banks and financial decisions of investors can give rise to time-varying
higher-order dependence structures in time-series data. Recently, time-varying higher-order
conditional moments have been found in equity returns and exchange rate data. Moreover,
time-varying higher-order conditional moments have been shown to have a significant impact
on time-varying lower-order conditional moments. Specification tests for conditional correla-
tions that are not robust to time-varying higher-order conditional moments will exhibit poor size
performances. The theoretical and empirical relevance of this higher-order-moment feature of
our tests underscores one of the essential contributions of the present article to the existing
literature.

Our tests can identify linear and nonlinear misspecifications in conditional correlations. In
addition, our tests do not require an alternative model, a particular estimation method and
distributional assumption. Also, the asymptotic distribution of the tests is invariant to the
uncertainty in parameter estimation. Our simulation study reveals that our test of constant
conditional correlation has good size properties and is consistent against a wide range of struc-
tures of time-varying conditional correlations. We illustrate the practicality of our generally
applicable tests using real data.

APPENDIX

In this Appendix, we assume C ∈ (0, ∞) is an arbitrary bounded constant, ‖ · ‖ the Euclidean
norm, and A∗ the complex conjugate of A. We also assume It−1 is the infinite, unobservable infor-
mation set. We presume that the bivariate data generating process Yt = μt + εt has conditional
variance matrix Ht = �t�t�t with �t = diag(h1/2

11,t, h1/2
22,t) and each hii,t has GARCH(1,1) errors

so that hii,t = ω0
i + α0

iε
2
it−1 + β0

ihii,t−1, for i = 1, 2, with ω0
i , α0

i, β0
i being elements of the finite

dimensional parameter vector θ0. Also �t is the time-varying conditional correlation matrix with
off-diagonal entries equal to ρt. For our observed sample, we let Ĩt−1 be the observable infor-
mation set, which contains some initial values and Ĩt−1 ⊂ It−1. We assume that a

√
T -consistent

estimator θ̂ for θ0 is associated with Ĩt−1 and derived from h̃ii,t(θ) = ωi + αĩε
2
it−1(θ) + βĩhii,t−1(θ),

with initial values h̃ii,t(θ) ≡ h̃ii,t ≤ C for t ≤ 0 and ε̃it(θ) = 0 for t ≤ 0. We assume Qa, a = 1, 2,
is identical to Q̂a in (16) and (17) except the unobservable sample {zt ≡ zt(θ0), ρt ≡ ρt(θ0)}T

t=1,
with θ0 ≡ p lim θ̂, is in lieu of the estimated residual sample {ẑt ≡ z̃t(θ̂), ρ̂t ≡ ρ̃t(θ̂)}T

t=1.

PROOF OF THEOREM 1. Here we only consider the proof for Q̂1 since that of Q̂2 is less involved.
This proof has three main components stated below as Theorems 3 to 5. Intuitively, Theorem
3 states that using the estimated standardized residuals instead of the true standardized error
does not affect the limit distribution of Q̂1. Theorem 4 states that the use of a sufficiently
large subset of the true standardized error, {zq,t, ρq,t}T

t=1, does not affect the limit distribution
of Q̂1.

THEOREM 3. Under the conditions of Theorem 1, Q̂1 − Q1
p→ 0.

THEOREM 4. Define Q1q to be Q1 but with {z1q,tz2q,t − ρq,t} in lieu of {z1tz2t − ρt}T
t=1. Let

q = p 1+ 1
4b−2 (ln2 T )

1
2b−1 . Under the conditions of Theorem 1, Q1q − Q1

p→ 0.
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THEOREM 5. Let q = p 1+ 1
4b−2 (ln2 T )

1
2b−1 . Under the conditions of Theorem 1, Q1q

d→ N(0, 1).

PROOF OF THEOREM 3. To proceed, we first establish a bound for the term T −1∑T
t=1

[
ẑ1tẑ2t −

z1tz2t
]2. To derive this stochastic bound, we adapt some of the results in Nelson (1990), Andrews

(1992), Lee and Hansen (1994), Lumsdaine (1996), and Hong (2001). For i = 1, 2, let z̆it(θ) ≡
ε̃it(θ)/h̆1/2

ii,t (θ) where

h̆ii,t(θ) = ωi + αiε
2
it−1(θ) + βih̆ii,t−1(θ) = ωi

1 − βi
+ αi

∞∑
j=0

β
j
i ε

2
it−1−j (θ)(A.1)

is an unobservable strictly stationary process with information set It−1. Then, we can write
ẑit − zit = [ẑit − z̆it(θ̂)] + [z̆it(θ̂) − zit] for i = 1, 2. We now show that for i = 1, 2

T −1
T∑

t=1

(z̆it(θ̂) − zit)4 = Op (T −2) and T −1
T∑

t=1

(ẑit − z̆it(θ̂))4 = Op (T −1).

We emphasize that although h̆ii,t(θ0) = hii,t, h̃ii,t(θ0) = hii,t due to the initial value h̃ii,0. This
implies that z̆it(θ0) = zit, z̃it(θ0) = zit. Furthermore, h̆ii,t(θ) − h̃ii,t(θ) = βt

i[h̆ii,0(θ) − h̃ii,0], z̃it(θ) =
ε̃it(θ)/̃h1/2

ii,t (θ), h̆ii,t(θ) ≥ C−1, and h̃it(θ) ≥ C−1. Now, T −1∑T
t=1(ẑit − z̆it(θ̂))4 =∑T

t=1
ε̂4

it[ĥ
1/2
ii,t −h̆1/2

ii,t (θ̂)]4

[ĥ1/2
ii,t h̆1/2

ii,t (θ̂)]4
,

where
[
ĥ1/2

ii,t − h̆1/2
ii,t (θ̂)

]4 =
[
ĥii,t − h̆ii,t(θ̂)

]4[
ĥ1/2

ii,t + h̆1/2
ii,t (θ̂)

]4 and ĥ1/2
ii,t + h̆1/2

ii,t (θ̂) ≥ 2C−1/2.

It follows that T −1∑T
t=1(ẑit − z̆it(θ̂))4 ≤ 1

16 C−6T −1[h̆ii,0(θ̂) − h̃ii,0]4∑T
t=1 β

4t
i ε̂4

it.

Suppose �0 is a convex and compact neighborhood of θ0. Assuming E supθ∈�0 |h̆ii,0(θ)|4 < ∞,
then by Markov’s inequality, supθ∈�0 h̆4

ii,0(θ) = Op (1). For 0 < p < 1
4 , using the Cr and Cauchy

Schwarz inequalities, we obtain

E
{

sup
θ∈�0

∣∣ ε̃4
it(θ)|p

}
= E sup

θ∈�0

|εit + μit − μ̃it(θ)|4p ≤ E|εit|4p + sup
θ∈�0

|μit − μ̃it(θ)|4p

= {E|zit|8p }1/2{E(h8p
ii,t

)}1/2 + sup
θ∈�0

|μit − μ̃it(θ)|4p ≤ 2C,

which follows from Assumptions 1 and 4, and also E(h8p
ii,t) ≤ C, which is adapted from Nelson

(1990). Consequently, by Markov’s inequality we deduce supθ∈�0

∑T
t=1 β

4t
i ε̃4

it(θ) = Op (1) where
0 < βi ≤ 1 − δ < 1 with δ > 0 and small and θ ∈ �0. Hence, T −1∑T

t=1(ẑit − z̆it(θ̂))4 = Op (T −1)
for i = 1, 2.

Employing the Mean Value theorem and the Cauchy Schwarz inequality, we find that

T −1
T∑

t=1

(z̆it(θ̂) − zit)4 ≤ ‖θ̂ − θ0‖4

{
T −1

T∑
t=1

‖∇θz̆it(θ)‖4

}
= Op (T −2).(A.2)

Arguments similar to those of Hong (2001, p. 213) can be used to show that supθ∈�0

T −1∑T
t=1 ‖∇θz̆it(θ)‖4 = Op (1).



1024 MCCLOUD AND HONG

Then, we have

T −1
T∑

t=1

[
ẑ1tẑ2t − z1tz2t

]2 = T −1
T∑

t=1

[
ẑ1t(ẑ2t − z2t) + z2t(ẑ1t − z1t)

]2
≤ 2T −1

T∑
t=1

ẑ2
1t(ẑ2t − z2t)2 + 2T −1

T∑
t=1

z2
2t(ẑ1t − z1t)2

≤ 16

{
T −1

T∑
t=1

(ẑ1t − z̆1t(θ̂))4

}1/2 {
T −1

T∑
t=1

(ẑ2t − z̆2t(θ̂))4

}1/2

+ 16

{
T −1

T∑
t=1

(z̆1t(θ̂) − z1t)4

}1/2 {
T −1

T∑
t=1

(ẑ2t − z̆2t(θ̂))4

}1/2

+ 8

{
T −1

T∑
t=1

z4
1t

}1/2 {
T −1

T∑
t=1

(ẑ2t − z̆2t(θ̂))4

}1/2

+ 16

{
T −1

T∑
t=1

(z̆1t(θ̂) − z1t)4

}1/2 {
T −1

T∑
t=1

(z̆2t(θ̂) − z2t)4

}1/2

+ 16

{
T −1

T∑
t=1

(z̆1t(θ̂) − z1t)4

}1/2 {
T −1

T∑
t=1

(z̆2t(θ̂) − z2t)4

}1/2

+ 8

{
T −1

T∑
t=1

z4
1t

}1/2 {
T −1

T∑
t=1

(z̆2t(θ̂) − z2t)4

}1/2

+ 4

{
T −1

T∑
t=1

z4
2t

}1/2 {
T −1

T∑
t=1

(ẑ1t − z̆1t(θ̂))4

}1/2

+ 4

{
T −1

T∑
t=1

z4
2t

}1/2 {
T −1

T∑
t=1

(z̆1t(θ̂) − z1t)4

}1/2

= Op (T −1) + Op (T −3/2) + Op (T −1/2) + Op (T −3/2)

+ Op (T −2) + Op (T −1) + Op (T −1/2) + Op (T −1) = Op (T −1/2),

where the last decomposition is by virtue of the Cauchy Schwarz inequality and we invoke
Markov’s inequality to derive T−1∑T

t=1zit
4 = Op(1) for i = 1, 2.

In a similar manner, we have T −1∑T
t=1 ‖ẑt − zt‖2 = T −1∑T

t=1(ẑ1t − z1t)2 + T −1∑T
t=1(ẑ2t −

z2t)2, where, for i = 1, 2,T −1∑T
t=1(ẑit − zit)2 ≤ 2T −1∑T

t=1(ẑit − z̆it(θ̂))2 + 2T −1∑T
t=1(z̆it(θ̂) −

zit)2. From above, we obtain T −1∑T
t=1(ẑit − z̆it(θ̂))2 = Op (T −1) and T −1∑T

t=1(z̆it(θ̂) − zit)2 =
Op (T −1). Therefore, T −1∑T

t=1 ‖ẑt − zt‖2 = Op (T −1).
To bound

∑T
t=1[ρ̂t − ρt]2, let ρt(θ̂) be associated with It−1. Then, by

Assumption 4

T∑
t=1

[ρ̂t − ρt(θ̂)]2 = Op (1).(A.3)
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Similarly, using a first-order Taylor series expansion, ρt(θ̂) = ρt + (θ̂ − θ0)′ ∇θρt(θ̄), where
‖θ̄ − θ0‖2 ≤ ‖θ̂ − θ0‖2. Utilizing the Cauchy Schwarz inequality and Assumptions 3 and 6 yields

T∑
t=1

[ρt(θ̂) − ρt]2 ≤ T ‖θ̂ − θ0‖2T −1
T∑

t=1

sup
θ∈�0

‖∇θρt(θ)‖2 = Op (1),(A.4)

where �0 is an ε −neighborhood of θ0. Therefore,

T∑
t=1

[ρ̂t − ρt]2 = Op (1).(A.5)

Now define σ̃
(m,0)
j (0, v) to be σ̂

(m,0)
j (0, v) but with mt(θ0) in lieu of mt(θ̂). To prove the

theorem we can show (i) D̂−1/2
1

∫ ∑T −1
j=1 k2(j/p)(T − j)

[|σ̂(m,0)
j (0, v)|2 − |σ̃(m,0)

j (0, v)|2]dW(v)
p→

0, (ii) Ĉ1 − C̃1 = Op (T −1/2), and (iii) D̂1 − D̃1
p→ 0. We note that D̂1 and Ĉ1 grow to infinity

at rate p as p → ∞, p/T → 0. Since parts (ii) and (iii) above are straightforward, we will only
show the proof for part (i). To begin, we express the integral in (i) as

∫ T −1∑
j=1

k2(j/p)(T − j)
[|σ̂(m,0)

j (0, v)|2 − |σ̃(m,0)
j (0, v)|2] dW(v) = B̂1 + 2Re(B̂2),(A.6)

where

B̂1 =
∫ T −1∑

j=1

k2(j/p)(T − j)
∣∣σ̂(m,0)

j (0, v) − σ̃
(m,0)
j (0, v)

∣∣2 dW(v),

B̂2 =
∫ T −1∑

j=1

k2(j/p)(T − j)
[
σ̂

(m,0)
j (0, v) − σ̃

(m,0)
j (0, v)

]
σ̃

(m,0)
j (0, v)� dW(v).

It remains to demonstrate that Propositions 1 and 2 are satisfied. �

PROPOSITION 1. Under the regularity conditions of Theorem 1, p−1/2B̂1 → 0.

PROPOSITION 2. Under the regularity conditions of Theorem 1, p−1/2B̂2 → 0.

PROOF OF PROPOSITION 1. Let δ̂t(v) ≡ eiv′ẑt − eiv′zt , ψt−j (v) ≡ eiv′zt−j − ϕj (v), where ϕj (v) ≡
E(eiv′zt−j ),Tj ≡ T − j , and suppose j > 0. It is easy to show that

σ̂
(m,0)
j (0, v) − σ̃

(m,0)
j (0, v) = T −1

j

T∑
t=j+1

[
ẑ1tẑ2t − z1tz2t

]
δ̂t−j (v) + T −1

j

T∑
t=j+1

[
ẑ1tẑ2t − z1tz2t

]
ψt−j (v)

−
⎛⎝T −1

j

T∑
t=j+1

[
ẑ1tẑ2t − z1tz2t

]⎞⎠⎛⎝T −1
j

T∑
t=j+1

δ̂t−j (v)

⎞⎠
−
⎛⎝T −1

j

T∑
t=j+1

[
ẑ1tẑ2t − z1tz2t

]⎞⎠⎛⎝T −1
j

T∑
t=j+1

ψt−j (v)

⎞⎠

(A.7)
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+ T −1
j

T∑
t=j+1

z1tz2t δ̂t−j (v) −
⎛⎝T −1

j

T∑
t=j+1

z1tz2t

⎞⎠⎛⎝T −1
j

T∑
t=j+1

δ̂t−j (v)

⎞⎠
− T −1

j

T∑
t=j+1

[
ρ̂t − ρt

]
δ̂t−j (v) − T −1

j

T∑
t=j+1

[
ρ̂t − ρt

]
ψt−j (v)

+
⎛⎝T −1

j

T∑
t=j+1

[
ρ̂t − ρt

]⎞⎠⎛⎝T −1
j

T∑
t=j+1

δ̂t−j (v)

⎞⎠
+
⎛⎝T −1

j

T∑
t=j+1

[
ρ̂t − ρt

]⎞⎠⎛⎝T −1
j

T∑
t=j+1

ψt−j (v)

⎞⎠− T −1
j

T∑
t=j+1

ρt δ̂t−j (v)

+
⎛⎝T −1

j

T∑
t=j+1

ρt

⎞⎠⎛⎝T −1
j

T∑
t=j+1

δ̂t−j (v)

⎞⎠ =
12∑

b=1

Êbj (v).

Therefore, to complete the proof of Proposition 1, it suffices to prove the following lemma. �

LEMMA 1. For b = 1 , . . . , 12, let Êbj (v) be as defined above. Then

(1)
∑T −1

j=1 k2(j/p) Tj
∫ |Ê1j (v)|2dW(v) = Op ( p

T 1/2 ).

(2)
∑T −1

j=1 k2(j/p) Tj
∫ |Ê2j (v)|2dW(v) = Op (1).

(3)
∑T −1

j=1 k2(j/p) Tj
∫ |Ê3j (v)|2dW(v) = Op ( p

T 1/2 ).

(4)
∑T −1

j=1 k2(j/p) Tj
∫ |Ê4j (v)|2dW(v) = Op ( p

T 1/2 ).

(5)
∑T −1

j=1 k2(j/p) Tj
∫ |Ê5j (v)|2dW(v) = Op ( p

T ).

(6)
∑T −1

j=1 k2(j/p) Tj
∫ |Ê6j (v)|2dW(v) = Op ( p

T ).

(7)
∑T −1

j=1 k2(j/p) Tj
∫ |Ê7j (v)|2dW(v) = Op ( p

T ).

(8)
∑T −1

j=1 k2(j/p) Tj
∫ |Ê8j (v)|2dW(v) = Op (1).

(9)
∑T −1

j=1 k2(j/p) Tj
∫ |Ê9j (v)|2dW(v) = Op ( p

T ).

(10)
∑T −1

j=1 k2(j/p) Tj
∫ |Ê10j (v)|2dW(v) = Op ( p

T ).

(11)
∑T −1

j=1 k2(j/p) Tj
∫ |Ê11j (v)|2dW(v) = Op ( p

T ).

(12)
∑T −1

j=1 k2(j/p) Tj
∫ |Ê12j (v)|2dW(v) = Op ( p

T ).

PROOF OF PROPOSITION 2. To begin, note that

∣∣[σ̂(m,0)
j (0, v) − σ̃

(m,0)
j (0, v)

]
σ̃

(m,0)
j (0, v)∗∣∣ ≤ 12∑

b=1

∣∣Êbj (v)
∣∣ ∣∣σ̃(m,0)

j (0, v)
∣∣,

where Êbj (v) is as previously defined. For ease of exposition, let

Ẽbj (v) ≡
T −1∑
j=1

k2(j/p) Tj

∫ ∣∣Êbj (v)
∣∣ ∣∣σ̃(m,0)

j (0, v)
∣∣dW(v).
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By the Cauchy-Schwarz inequality and for each b ∈ {1 , . . . , 12} but with b = 2 or 8, we write

Ẽbj ≤
⎧⎨⎩

T −1∑
j=1

k2(j/p) Tj

∫ ∣∣Êbj (v)
∣∣2dW(v)

⎫⎬⎭
1/2 ⎧⎨⎩

T −1∑
j=1

k2(j/p) Tj

∫ ∣∣σ̃(m,0)
j (0, v)

∣∣2dW(v)

⎫⎬⎭
1/2

.

Under the null hypothesis, supv∈R2 E|σ̃(m,0)
j (0, v)|2 ≤ CT −1

j . Moreover, by Markov’s inequality
and the m.d.s. property of {z1tz2t − ρt},

T −1∑
j=1

k2(j/p) Tj

∫ ∣∣σ̃(m,0)
j (0, v)

∣∣2dW(v) = Op (p).

Then, using Lemma 1, we find that for b = 1, 3, 4, Ẽbj = Op (p 1/2/T 1/4)Op (p 1/2) =
op (p 1/2), for p = cT λ, 0 < λ < (3 + 1

4b−2 )−1, p → ∞,T → ∞, p/T → 0; when b =
5, 6, 7, 9, 10, 11, 12, Ẽbj = Op (p 1/2/T 1/2)Op (p 1/2) = op (p 1/2). To complete this proof, we
need to establish bounds for Ẽ2j and Ẽ8j . Since their derivations are quite similar, we only show
that Ẽ8j = op (p 1/2). Now,

Ẽ8j (v) ≡
T −1∑
j=1

k2(j/p) Tj

∫ ∣∣Ê8j (v)
∣∣ ∣∣σ̃(m,0)

j (0, v)
∣∣dW(v)

≤
T −1∑
j=1

k2(j/p) Tj

∫ ∣∣Ê8j1(v)
∣∣ ∣∣σ̃(m,0)

j (0, v)
∣∣dW(v)

+
T −1∑
j=1

k2(j/p) Tj

∫ ∣∣Ê8j2(v)
∣∣ ∣∣σ̃(m,0)

j (0, v)
∣∣dW(v).

(A.8)

Then, for the first term in (A.8), we have

T −1∑
j=1

k2(j/p) Tj

∫ ∣∣Ê8j1(v)
∣∣ ∣∣σ̃(m,0)

j (0, v)
∣∣dW(v) ≤ 2

[
T∑

t=1

sup
θ∈�0

|ρ̃t(θ) − ρt(θ)|
]

×
T −1∑
j=1

k2(j/p)
∫ ∣∣σ̃(m,0)

j (0, v)
∣∣dW(v)

= Op (p/T 1/2),

by virtue of the kernel bound, Assumption 4, and the m.d.s property of {z1tz2t − ρt}.
For the second term in (A.8), we have

T −1∑
j=1

k2(j/p) Tj

∫ ∣∣Ê8j2(v)
∣∣ ∣∣σ̃(m,0)

j (0, v)
∣∣dW(v)

≤ ‖θ̂ − θ0‖
T −1∑
j=1

k2(j/p) Tj

∫ ∥∥∥∥∥∥T −1
j

T∑
t=j+1

∇θρt(θ0)ψt−j (v)

∥∥∥∥∥∥ ∣∣σ̃(m,0)
j (0, v)

∣∣dW(v)

(A.9)
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+‖
√

T (θ̂ − θ0)‖2

[
T −1

T∑
t=1

sup
θ∈�0

∥∥∇θθρt(θ)
∥∥] T −1∑

j=1

k2(j/p)
∫ ∣∣σ̃(m,0)

j (0, v)
∣∣dW(v)

= Op

(
1 + p

T 1/2

)
+ Op

( p
T 1/2

)
= op (p 1/2).

Note that for the first term in (A.9) we have made use of the Cauchy Schwarz,α-mixing condition
on {∇θρt(θ0)ψ t−j(v)}, Assumptions 3 and 6, and the m.d.s property of {z1tz2t − ρt}. In a similar
manner, we obtain Ẽ2j = op (p 1/2). This concludes the proof. �

PROOF OF THEOREM 4. This proof has a structure similar to that of Theorem 3. Let B̂1q and
B̂2q be as in B̂1 and B̂2, respectively, but with {z1q,tz2q,t, ρq,t}T

t=1 in lieu of {z1tz2t, ρt}T
t=1. We will

now show that p−1/2B̂1q
p→ 0 and p−1/2B̂2q

p→ 0.
To advance, we set δq,t ≡ eiv′zt − eiv′zq,t and ψq,t ≡ eiv′zq,t − ϕq(v) with ϕq(v) ≡ E(eiv′zq,t ). Also,

let σ̃(m,0)
q,j (0, v) be as in σ̃

(m,0)
j (0, v) but with {z1q,tz2q,t, ρq,t}T

t=1 in lieu of {z1tz2t, ρt}T
t=1. As in (A.7),

we obtain the following decomposition:

σ̃
(m,0)
j (0, v) − σ̃

(m,0)
q,j (0, v) =

12∑
b=1

Êbjq(v).

Repeating the steps in the proof of Theorem 3 we find that as q/p → 0 and for η ≥ 1

p− 1
2 B̂1q ≤

12∑
b=1

T −1∑
j=1

k2(j/p)Tj

∫
|Êbjq(v)|2 dW(v) = Op

(
p 1/2/q

η
2
) = op (1)

p− 1
2 B̂2q = 2p− 1

2

12∑
b=1

T −1∑
j=1

k2(j/p)Tj Re
∫

Êbjq(v)σ̃(m,0)
q,j (0, v)∗dW(v) = Op

(
p 1/2/q

η
2
) = op (1),

where and we have made use of Assumption 2 and the m.d.s property of {z1tz2t − ρt} and
{z1q,tz2q,t − ρq,t}. �

PROOF OF THEOREM 5. Let σ̃
(m,0)
q,j (0, v) be as σ̃

(m,0)
j (0, v), C̃1q be as C̃1, and D̃1q be as D̃1 but

with {zq,t}T
t=1 and {ρq,t}T

t=1 both in lieu of {zt}T
t=1 and {ρt}T

t=1. In what follows, we prove the
following propositions:

PROPOSITION 3. Under the conditions of Theorem 1,

p−1/2
T −1∑
j=1

k2(j/p)Tj

∫ ∣∣̃σ(m,0)
q,j (0, v)

∣∣2dW(v) = p−1/2C̃1q + p−1/2Ṽq + op (1),

where

Ṽq =
T∑

t=2q+2

[
z1q,tz2q,t − ρq,t

] q∑
j=1

aT (j)
∫

ψq,t−j (v)

[t−2q−1∑
s=1

[
z1q,sz2q,s − ρq,s

]
ψq,s−j (v)∗

]
dW(v)

and aT(j) ≡ k2(j/p)T−1
j .
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PROPOSITION 4. D̃−1/2
1q Ṽq

d→ N(0, 1).

PROOF OF PROPOSITION 3. Since σ̃
(m,0)
q,j (0, v) = T −1

j

∑T
t=j+1

[
z1q,tz2q,t − ρq,t

]
ψq,t−j (v), where

ψq,t−j (v) = eiv′zq,t−j − ϕq,j (v) with ϕq,j (v) = E(eiv′zq,t−j ), then

T −1∑
j=1

k2(j/p)Tj

∫ ∣∣̃σ(m,0)
q,j (0, v)

∣∣2dW(v) =
T −1∑
j=1

aT (j)
∫ ∣∣∣∣∣

T∑
t=1

[
z1q,tz2q,t − ρq,t

]
ψq,t−j (v)

∣∣∣∣∣
2

dW(v)

+
T −1∑
j=1

aT (j)
∫ ∣∣∣∣∣

j∑
t=1

[
z1q,tz2q,t − ρq,t

]
ψq,t−j (v)

∣∣∣∣∣
2

dW(v)

− 2Re
T −1∑
j=1

aT (j)
∫ [ T∑

t=1

[
z1q,tz2q,t − ρq,t

]
ψq,t−j (v)

]

×
[ j∑

t=1

[
z1q,tz2q,t − ρq,t

]
ψq,t−j (v)

]∗

dW(v)

≡ R̃0q + R̃1q − 2Re(R̃2q).

(A.10)

We continue the decomposition through the term R̃0q:

R̃0q =
T −1∑
j=1

aT (j)
∫ T∑

t=1

[
z1q,tz2q,t − ρq,t

]2|ψq,t−j (v)|2dW(v)

+ 2Re
T −1∑
j=1

aT (j)
∫ T∑

t=2

t−1∑
s=1

[
z1q,tz2q,t − ρq,t

] [
z1q,sz2q,s − ρq,s

]
×ψq,t−j (v)ψq,s−j (v)∗ dW(v)

≡ C̃q + 2Re(Ũq).

(A.11)

Also, we have

Ũq =
T∑

t=2q+2

[
z1q,tz2q,t − ρq,t

] ∫ T −1∑
j=1

aT (j)ψq,t−j (v)

×
t−2q−1∑

s=1

[
z1q,sz2q,s − ρq,s

]
ψq,s−j (v)∗dW(v)

+
T∑

t=2

[
z1q,tz2q,t − ρq,t

] ∫ T −1∑
j=1

aT (j)ψq,t−j (v)

×
t−1∑

s=max(1,t−2q)

[
z1q,sz2q,s − ρq,s

]
ψq,s−j (v)∗dW(v)

≡ Ũ1q + R̃3q.

(A.12)
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This simplification allows for the processes {zq,t, ρq,t, ψq,t−j(v)}q
j=1 and {zq,s, ρq,s, ψq,s−j(v)}q

j=1

in Ũ1q to be independent since s < t − 2q. In R̃3q s ≥ t − 2q. Furthermore, we have

Ũ1q =
T∑

t=2q+2

[
z1q,tz2q,t − ρq,t

] ∫ T −1∑
j=1

aT (j)ψq,t−j (v)

×
t−2q−1∑

s=1

[
z1q,sz2q,s − ρq,s

]
ψq,s−j (v)∗dW(v)

+
T∑

t=2q+2

[
z1q,tz2q,t − ρq,t

] ∫ T −1∑
j=1

aT (j)ψq,t−j (v)

×
t−2q−1∑

s=1

[
z1q,sz2q,s − ρq,s

]
ψq,s−j (v)∗dW(v)

≡ Ṽq + R̃4q.

(A.13)

It follows that

p−1/2
T −1∑
j=1

k2(j/p)Tj

∫ ∣∣̃σ(m,0)
q,j (0, v)

∣∣2dW(v) = C̃q + 2Re(Ṽq) + R̃1q − 2Re(R̃2q − R̃3q − R̃4q).

Assuming q = p 1+ 1
4b−2 (ln2 T )

1
2b−1 and p = CTλ for 0 < λ < (3 + 1

4b−2 )−1, to complete the proof
we show Lemmas 2 to 6 and conclude p−1/2[C̃q − C̃1q] = op (1) and p−1/2R̃nq = op (1) for n =
1, 2, 3, 4. �

LEMMA 2. For C̃q as in A.11, C̃q − C̃1q = Op (p 2/T ).

LEMMA 3. For R̃1q as in A.10, R̃1q = Op (p 2/T ).

LEMMA 4. For R̃2q as in A.10, R̃2q = Op (p 3/2/T 1/2).

LEMMA 5. For R̃3q as in A.12, R̃3q = Op (q1/2 p/T 1/2).

LEMMA 6. For R̃4q as in A.13, R̃4q = Op (p 2b ln(T )/q2b−1).

PROOF OF PROPOSITION 4. Let Ṽq =∑T
t=2q+2 Vq(t), where

Vq(t) ≡ [z1q,tz2q,t − ρq,t]
∫ T −1∑

j=1

aT (j)ψq,t−j (v)Gj,t−2p−1(v) dW(v),

and Gj,t−2p−1(v) ≡∑t−2q−1
s=1 [z1q,sz2q,s − ρq,s]ψq,s−j(v)∗. To derive asymptotic normality, we em-

ploy Brown’s (1971) central limit theorem for martingale processes, which guarantees that

var(2ReṼq)−1/22ReṼq
d→ N(0, 1) under
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Condition 1: var(2ReṼq)−1
T∑

t=1

[2ReṼq]2
I[|2ReṼq| > ν var(2ReṼq)1/2] → 0 ∀ ν > 0,

Condition 2: var(2ReṼq)−1
T∑

t=1

E[2ReṼ 2
q |It−1]

p→ 1.

We first establish the existence of var(2ReṼq). Using the m.d.s property of {z1q,tz2q,t − ρq,t,
It−1} under the null hypothesis and the q-dependent assumption on {z1q,tz2q,t − ρq,t}, we obtain

E(Ṽ 2
q ) =

T∑
t=2q+2

E

⎡⎣[z1q,tz2q,t − ρq,t
]2

×
(∫ ∑q

j=1 aT (j)ψq,t−j (v)
t−2q−1∑

s=1

[
z1q,sz2q,s − ρq,s

]
ψq,s−j (v)∗d W(v)

)2⎤⎦
=

q∑
j=1

q∑
l=1

aT (j)aT (l)
∫ ∫ T∑

t=2q+2

t−2q−1∑
s=1

E
{[

z1q,tz2q,t − ρq,t
]2 · ψq,t−j (v)ψq,t−l(v′)

}
× E

{[
z1q,sz2q,s − ρq,s

]2 · ψ∗
q,s−j (v)ψ∗

q,s−l(v
′)
}
dW(v) dW(v′)

= 1
2

q∑
j=1

q∑
l=1

k2(j/p)k2(l/p)
∫ ∫ ∣∣E{[z1q,0z2q,0 − ρq,0

]2
ψq,−j (v)ψq,−l(v′)

}∣∣2
dW(v) dW(v′)[1 + o(1)].

In the same manner, we deduce

E(Ṽ ∗
q )2 = 1

2

q∑
j=1

q∑
l=1

k2(j/p)k2(l/p)

×
∫ ∫ ∣∣E{[z1q,0z2q,0 − ρq,0

]2
ψq,−j (v)ψq,−l(v′)

}∣∣2dW(v) dW(v′)[1 + o(1)],

E|Ṽq|2 = 1
2

q∑
j=1

q∑
l=1

k2(j/p)k2(l/p)

×
∫ ∫ ∣∣E{[z1q,0z2q,0 − ρq,0

]2
ψq,−j (v)ψq,−l(v′)

}∣∣2dW(v) dW(v′)[1 + o(1)].

Under Assumption 2, we obtain E(Ṽ 2
q ) = E(Ṽ ∗

q )2 = E|Ṽq|2. Then

var(2ReṼq) = E(Ṽ 2
q ) + E(Ṽ ∗

q )2 + 2E|Ṽq|2

= 2
q∑

j=1

q∑
l=1

k2(j/p)k2(l/p)

×
∫ ∫ ∣∣E{[z1,0z2,0 − ρ0

]2
ψ−j (v)ψ−l(v′)

}∣∣2dW(v) dW(v′)[1 + o(1)].

Note the convergence E{[z1q,0z2q,0 − ρq,0]2ψq,−j (v)ψq,−l(v′)} −→ E{[z1,0z2,0 − ρ0]2ψ−j (v)
ψ−l(v′)} as q → ∞ follows from Assumption 2. For further simplification, we apply the α-mixing
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condition in Assumption 5 to {[z1,0z2,0 − ρ0]2ψ−j (v)ψ−l(v′)}. First, let �0 ≡ E[z1,0z2,0 − ρ0]2

and set ηj,l(v) ≡ E{[(z1,0z2,0 − ρ0)2 − �0]ψ−j (v)ψ−l(v′)}. Then by virtue of Assumption 5 we
have |ηj,l(v)|2 ≤ Cα(l − j)ν−1/ν,

∑∞
j,l=1 | ηj,l(v) | 2 ≤ C. Under |k(.)| ≤ 1, a change of variable, and

the convergence criterion p−1∑q
j=m+1k2(j/p)k2((j − m)/p) → ∫

0
∞k4(z)dz with p → ∞ and q/p

→ 0, we deduce the following:

var(2ReṼq) = 2
q∑

j=1

q∑
l=1

k2(j/p)k2(l/p)
∫ ∫

�2
0|σl−j (v, v′)|2dW(v) dW(v′)[1 + o(1)]

= 2p
q−1∑

m=1−q

⎡⎣p−1
q∑

j=m+1

k2(j/p)k2((j − m)/p)

⎤⎦
×�2

0

∫ ∫
|σm(v, v′)|2dW(v) dW(v′)[1 + o(1)]

= 4πp
∫ ∞

0
k4(z) dz �2

0

∫ ∫ ∫ π

−π

|f (ω, v, v′)|2dω dW(v) dW(v′)[1 + o(1)].

We now show that condition 1 holds. Using the m.d.s. property of {z1q,t, z2q,t − ρq,t, It−1} and
Rosenthal’s inequality, we find E | Gj,t−2p−1(v) | 4 ≤ Ct2 for 1 ≤ j ≤ q. By virtue of Minkowski’s
inequality, we deduce

E|Vq(t)|4 ≤
⎡⎣ q∑

j=1

aT (j)
∫ (

E
∣∣[z1q,tz2q,t − ρq,t]ψq,t−j (v)Gj,t−2p−1(v)

∣∣4)1/4
dW(v)

⎤⎦4

≤ Ct2

⎡⎣ q∑
j=1

aT (j)

⎤⎦4

= O(p 4t2/T 4).

Then for p2/T → 0, we have
∑T

t=2q+2 E|Ṽ 2
q (t)|4 = o(p 2). This shows that condition 1 of Brown’s

(1971) theorem is satisfied.
It remains to show condition 2 is also satisfied. Define ρz,q,t ≡ E

{
[z1q,tz2q,t − ρq,t]2|It−1

}
and

H̃j,l
q,t(v, v′) ≡ ρz,q,tψq,t−j (v)ψq,t−l(v′) − E[ρz,q,tψq,t−j (v)ψq,t−l(v′)]. Then

E
[
Ṽ 2

q (t)
] = ρz,q,t

⎡⎣ q∑
j=1

aT (j)
∫

ψq,t−j (v)Gj,t−2p−1(v)

⎤⎦2

=
q∑

j=1

q∑
l=1

aT (j)aT (l)
∫ ∫

ρz,q,tψq,t−j (v)ψq,t−l(v′)

× Gj,t−2p−1(v)Gl,t−2p−1(v′) dW(v) dW(v′)

(A.14)
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=
q∑

j=1

q∑
l=1

aT (j)aT (l)
∫ ∫

E[ρz,q,tψq,t−j (v)ψq,t−l(v′)]

× Gj,t−2p−1(v)Gl,t−2p−1(v′) dW(v) dW(v′)

+
q∑

j=1

q∑
l=1

aT (j)aT (l)
∫ ∫

H̃j,l
q,t(v, v

′)Gj,t−2p−1(v)Gl,t−2p−1(v′) dW(v) dW(v′)

≡ S1q(t) + V1q(t).

In a similar manner, we obtain

S1q(t) =
q∑

j=1

q∑
l=1

aT (j)aT (l)
∫ ∫

E[ρz,q,tψq,t−j (v)ψq,t−l(v′)]

× E[Gj,t−2p−1(v)Gl,t−2p−1(v′)]dW(v) dW(v′)

+
q∑

j=1

q∑
l=1

aT (j)aT (l)
∫ ∫

E[ρz,q,tψq,t−j (v)ψq,t−l(v′)]

× {Gj,t−2p−1(v)Gl,t−2p−1(v′) − E[Gj,t−2p−1(v)Gl,t−2p−1(v′)]
}
dW(v) dW(v′)

≡ E
[
V 2

q (t)
]+ S2q(t).

We note that E[V2
q(t)] can be simplified to give

E
[
V 2

q (t)
] =

q∑
j=1

q∑
l=1

(t − q − 1)aT (j)aT (l)
∫ ∣∣E[ρz,q,tψq,t−j (v)ψq,t−l(v′)

]∣∣dW(v) dW(v′).

Let Hj,l
q,s(v, v′) ≡ (z1q,sz2q,s − ρq,s)2ψq,s−j(v)ψq,s−l(v′) − E[(z1q,sz2q,s − ρq,s)2ψq,s−j(v)ψq,s−l(v′)].

We decompose S2q(t) as follows:

S2q(t) =
q∑

j=1

q∑
l=1

aT (j)aT (l)
∫

E[(z1q,tz2q,t − ρq,t)2ψq,t−j (v)ψq,t−l(v′)]

×
t−2q−1∑

s=1

Hj,l
q,s(v, v

′) dW(v) dW(v′)

+
q∑

j=1

q∑
l=1

aT (j)aT (l)
∫

E[(z1q,tz2q,t − ρq,t)2ψq,t−j (v)ψq,t−l(v′)]

×
t−2q−1∑

s=2

s−1∑
τ=1

(z1q,sz2q,s − ρq,s)ψq,s−j (v)(z1q,τz2q,τ − ρq,τ)ψq,τ−l(v′) dW(v) dW(v′)

≡ V2q(t) + S3q(t).

(A.15)
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Finally, we have

S3q(t) =
q∑

j=1

q∑
l=1

aT (j)aT (l)
∫

E[(z1q,tz2q,t − ρq,t)2ψq,t−j (v)ψq,t−l(v′)]

×
∑

0<s−τ≤2q

∑
0<s−τ≤2q

(z1q,sz2q,s − ρq,s)ψq,s−j (v)(z1q,τz2q,τ − ρq,τ)ψq,τ−l(v′) dW(v) dW(v′)

+
q∑

j=1

q∑
l=1

aT (j)aT (l)
∫

E[(z1q,tz2q,t − ρq,t)2ψq,t−j (v)ψq,t−l(v′)]

×
∑

s−τ>2q

∑
s−τ>2q

(z1q,sz2q,s − ρq,s)ψq,s−j (v)(z1q,τz2q,τ − ρq,τ)ψq,τ−l(v′) dW(v) dW(v′)

≡ V3q(t) + V4q(t).

(A.16)

Combining the above equations, we see that
∑T

t=2q+2{E[V2
q(t) | It−1] − E[V2

q(t)]} =∑4
b=1

∑t−2q−1
s=1 Vbq(t). To complete the proof, we show that the conditions of the foregoing

Lemmas 7 to 10 are satisfied. These naturally produce the result E |∑T
t=2q+2{E[V2

q(t) | It−1]

− E[V2
q(t)]} | 2 = o(p2) for q = p 1+ 1

4b−2 (ln2 T )
1

2b−1 and p = CTλ where 0 < λ <
(
3 + 1

4b−2

)−1.
Consequently, condition 2 of Brown’s (1971) central limit theorem holds. �

LEMMA 7. Given V1q(t) as in (A.14), then E |∑T
t=2q+2V1q(t) | 2 = O(qp4/T).

LEMMA 8. Given V2q(t) as in (A.15), then E |∑T
t=2q+2V2q(t) | 2 = O(qp4/T).

LEMMA 9. Given V3q(t) as in (A.16), then E |∑T
t=2q+2V3q(t) | 2 = O(qp4/T).

LEMMA 10. Given V4q(t) as in (A.16), then E |∑T
t=2q+2V4q(t) | 2 = O(p).

REMARK 1. We emphasize the following relations and bounds that will be used to prove the
above lemmas. For j, l ∈ {1, 2 , . . . , q} and an arbitrary constant C,

(1) H̃j,l
q,t(v, v′) is independent of {Gj,t−2p−1(v) Gl,t−2p−1(v′)},

(2) H̃j,l
q,t(v, v′) is independent of H̃j,l

q,τ(v, v′) for |t − τ| > 2q,
(3) E | Gj,t−2p−1(v) | 4 ≤ Ct2.
(4) Hj,l

q,s(v, v′) is independent of Hj,l
q,τ(v, v′) for |s − τ| > 2q,

(5) E |∑t−q−1
s=1 Hj,l

q,s(v, v′) | 2 =∑ | s−τ|≤2q
∑

|s−τ|≤2qE[Hj,l
q,s(v, v′)Hj,l

q,τ(v, v′)] ≤ Ctq,
(6) [

∑q
j=1aT(j)]4 = O(p4/T4).

PROOF OF THEOREM 2. This proof is separated into Theorems 6 and 7, which we state and
prove later. �

THEOREM 6. Under the regularity conditions of Theorem 2, p 1/2/T [Q̂1 − Q1]
p→ 0.

THEOREM 7. Under the regularity conditions of Theorem 2,

p
1
2 /T Q1

p→ 0
1

D1/2
1

∫ ∫ π

−π

∣∣∣f (0,m,0)(ω, 0, v) − f (0,m,0)
0 (ω, 0, v)

∣∣2dωdW(v).



TESTING THE STRUCTURE OF CONDITIONAL CORRELATIONS 1035

PROOF OF THEOREM 6. The three main components of this proof are

(i) T −1
∫ T −1∑

j=1

k2(j/p)Tj
[∣∣σ̂(m,0)

j (0, v)
∣∣2 − ∣∣σ̃(m,0)

j (0, v)
∣∣2]dW(v)

p→ 0,(A.17)

(ii) p−1[Ĉ1 − C̃1] = Op (1) and (iii) p−1[D̂1 − D̃1]
p→ 0, where C̃1 and D̃1 are as in Ĉ1 and D̂1 but

with {zt, ρt}T
t=1 in lieu of {ẑt, ρ̂t}T

t=1. Here, we will only prove (A.17), since parts (ii) and (iii) of
this proof are straightforward. Following the proof of Theorem 1, we decompose the left-hand
side of (A.17) so that

T −1
∫ T −1∑

j=1

k2(j/p)Tj
[∣∣σ̂(m,0)

j (0, v)
∣∣2 − ∣∣σ̃(m,0)

j (0, v)
∣∣2]dW(v) = B̂1 + 2ReB̂2,

where B̂1 and B̂2 are as defined in (A.6). From Theorem 7, we see that under the alternative
hypothesis, T −1

∫ ∑T −1
j=1 k2(j/p)Tj |σ̃(m,0)

j (0, v)|2dW(v) = Op (1). Then, applying the Cauchy-

Schwarz inequality to B̂2, we see that showing p−1B̂1
p→ 0 will be sufficient. To begin, we

retain our previous decomposition of B̂1 in (A.7). The steps for this proof are identical to
those employed in Lemma 1, with the exception that although {zt} is not m.d.s. under the
alternative we still have E(

∑T
t=j+1z1tz2t) ≤ CTj. Thus, it is straightforward to show the condition

T −1
∫ ∑T −1

j=1 k2(j/p)Tj |Êbj |2dW(v) p
→0 for b ∈ {1, 2 , . . . , 12}. �

PROOF OF THEOREM 7. With slight modifications, this proof is easily obtained from Hong
(1999, Proof of Theorem 5). �
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HE, C., AND T. TERÄSVIRTA, “An Extended Constant Conditional Correlation GARCH model and its
Fourth-Moment Structure,” Econometric Theory 20 (2004), 904–26.

HONG, Y., “Hypothesis Testing in Time Series via the Empirical Characteristic Spectral Density Ap-
proach,” Journal of the American Statistical Association 94 (1999), 1201–20.

——, “A Test for Volatility Spillover with Application to Exchange Rates,” Journal of Econometrics 103
(2001), 183–224.

JEANTHEAU, T., “Strong Consistency of Estimations of Multivariate ARCH Model,” Econometric Theory
14 (1998), 70–86.

KING, M. A., AND S. WADHWANI, “Transmission of Volatility between Stock Markets,” The Review of
Financial Studies 3 (1990), 5–33.

KOENKER R., “A Note on Studentizing a Test for Heteroscedasticity,” Journal of Econometrics 17 (1981),
107–12.

LEE, S-W., AND B. HANSEN, “Asymptotic Theory for the GARCH(1,1) Quasi-Maximum Likelihood Esti-
mator,” Econometric Theory 10 (1994), 29–52.

LEE, T-H., AND X. LONG, “Copula Based Multivariate GARCH Model with Uncorrelated Dependent
Errors,” Journal of Econometrics 150 (2009), 207–18.

LI, W. K., AND T. K. MAK, “On the Squared Residual Autocorrelations in Non-linear Time Series with
Conditional Heteroscedasticity,” Journal of Time Series Analysis 15 (1994), 627–36.

LIN, W.-L., R. F. ENGLE, AND T. ITO, “Do Bulls and Bears Move across Borders? International Transmission
of Stock Returns and Volatility,” The Review of Financial Studies 7 (1994), 507–38.

LING, T., AND M. MCALEER, “Asymptotic Theory for a Vector ARMA-GARCH Model,” Econometric
Theory 19 (2003), 280–310.

LONGIN, F., AND B. SOLNIK, “Is the Correlation in International Equity Returns Constant: 1960-1990?”
Journal of International Money and Finance 14 (1995), 3–26.

——, AND ——, “Extreme Correlation of International Equity Markets,” Journal of Finance 56 (2001),
649–76.

LUMSDAINE, R., “Consistency and Asymptotic Normality of the Quasi-Maximum Likelihood Estimator in
IGARCH(1,1) and Covariance Stationary GARCH(1,1) Models,” Econometrica 64 (1996), 575–96.

MCALEER, M., F. CHAN, S. HOTI, AND O. LIEBERMAN, “Structure and Asymptotic Theory for Multivariate
Asymmetric Conditional Volatility,” Econometric Reviews 28 (2009), 422–40.

——, ——, AND ——, “Generalized Autoregressive Conditional Correlation,” Econometric Theory 24
(2008), 1554–83.
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